A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems

水准点(测量) 局部最优 数学优化 趋同(经济学) 元启发式 计算机科学 算法 工程优化 收敛速度 最优化问题 优化算法 数学 钥匙(锁) 大地测量学 经济增长 经济 地理 计算机安全
作者
Ke Li,Haisong Huang,Shengwei Fu,Chi Ma,Qingsong Fan,Yunwei Zhu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:415: 116199-116199 被引量:38
标识
DOI:10.1016/j.cma.2023.116199
摘要

Metaheuristic algorithms are widely utilized in various fields owing to their ability to produce a variety of solutions. The Northern Goshawk Optimization (NGO) is an effective optimization algorithm, however, its convergence rate is slow and it tends to fall into local optima in some cases. Therefore, this paper proposes a Multi-strategy Enhanced Northern Goshawk Optimization (MENGO) algorithm, which introduces a novel exploration strategy based on Levy flights to mitigate the risk of getting trapped in local optima. To balance exploration and exploitation, a new nonlinear reduction strategy based on the sine function is proposed. Additionally, a novel exploitation strategy is employed to accelerate the convergence speed while ensuring accuracy. The effectiveness of MENGO is demonstrated by comparing it with 13 advanced algorithms using 23 classical benchmark and 12 CEC2022 test functions in different dimensions. To evaluate the feasibility of the proposed approach in real-world applications, it is studied for nine constrained engineering problems, and the performance is compared with other contender algorithms extracted from the literature. The all experimental results show that MENGO outperforms other state-of-the-art algorithms in terms of solution quality and stability, making it a more competitive option.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱罐罐发布了新的文献求助10
1秒前
科研通AI5应助整齐百褶裙采纳,获得10
2秒前
3秒前
5秒前
6秒前
7秒前
有魅力乌发布了新的文献求助10
8秒前
adamchris应助不会做科研采纳,获得100
8秒前
晨曦发布了新的文献求助10
9秒前
Kris发布了新的文献求助10
10秒前
zwy109发布了新的文献求助10
12秒前
英姑应助钱罐罐采纳,获得10
12秒前
东耦完成签到,获得积分10
20秒前
打打应助Kris采纳,获得10
22秒前
22秒前
23秒前
情怀应助超级的鹅采纳,获得10
23秒前
23秒前
战斗暴龙兽完成签到,获得积分10
24秒前
24秒前
isojso完成签到,获得积分10
24秒前
24秒前
有魅力乌完成签到,获得积分10
24秒前
26秒前
27秒前
Lily发布了新的文献求助10
29秒前
30秒前
30秒前
31秒前
31秒前
fhh完成签到,获得积分20
34秒前
35秒前
36秒前
慕青应助执着又蓝采纳,获得10
36秒前
123完成签到,获得积分10
36秒前
isojso发布了新的文献求助10
37秒前
fhh发布了新的文献求助10
37秒前
你可真下饭完成签到 ,获得积分10
38秒前
39秒前
行走的绅士完成签到,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068