亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems

水准点(测量) 局部最优 数学优化 趋同(经济学) 元启发式 计算机科学 算法 工程优化 收敛速度 最优化问题 优化算法 数学 钥匙(锁) 大地测量学 经济增长 经济 地理 计算机安全
作者
Ke Li,Haisong Huang,Shengwei Fu,Chi Ma,Qingsong Fan,Yunwei Zhu
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:415: 116199-116199 被引量:38
标识
DOI:10.1016/j.cma.2023.116199
摘要

Metaheuristic algorithms are widely utilized in various fields owing to their ability to produce a variety of solutions. The Northern Goshawk Optimization (NGO) is an effective optimization algorithm, however, its convergence rate is slow and it tends to fall into local optima in some cases. Therefore, this paper proposes a Multi-strategy Enhanced Northern Goshawk Optimization (MENGO) algorithm, which introduces a novel exploration strategy based on Levy flights to mitigate the risk of getting trapped in local optima. To balance exploration and exploitation, a new nonlinear reduction strategy based on the sine function is proposed. Additionally, a novel exploitation strategy is employed to accelerate the convergence speed while ensuring accuracy. The effectiveness of MENGO is demonstrated by comparing it with 13 advanced algorithms using 23 classical benchmark and 12 CEC2022 test functions in different dimensions. To evaluate the feasibility of the proposed approach in real-world applications, it is studied for nine constrained engineering problems, and the performance is compared with other contender algorithms extracted from the literature. The all experimental results show that MENGO outperforms other state-of-the-art algorithms in terms of solution quality and stability, making it a more competitive option.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研实习生采纳,获得10
1秒前
7秒前
15秒前
17秒前
21秒前
牛八先生完成签到,获得积分10
25秒前
烟花应助Dreamer.采纳,获得10
30秒前
Asura完成签到,获得积分10
30秒前
33秒前
RR发布了新的文献求助10
33秒前
科研通AI2S应助科研通管家采纳,获得30
37秒前
馆长应助科研通管家采纳,获得10
37秒前
馆长应助科研通管家采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
37秒前
科研通AI6应助哈哈哈采纳,获得10
39秒前
RR完成签到,获得积分10
47秒前
47秒前
Hodlumm发布了新的文献求助10
52秒前
哈哈哈发布了新的文献求助10
56秒前
58秒前
1分钟前
无产阶级科学者完成签到,获得积分10
1分钟前
云梦完成签到,获得积分10
1分钟前
Dreamer.发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
文艺易蓉发布了新的文献求助10
1分钟前
彭于晏应助文艺易蓉采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
Yan发布了新的文献求助10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
Dreamer.发布了新的文献求助10
2分钟前
科研通AI5应助Yan采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587