Data-Knowledge-Driven Modeling and Operational Adjustment for the Pharmaceutical Tablet Manufacturing Process via Wet Granulation

关键质量属性 医药制造业 背景(考古学) 计算机科学 过程(计算) 设计质量 造粒 钥匙(锁) 质量(理念) 贝叶斯网络 过程分析技术 数据挖掘 过程管理 工艺工程 在制品 人工智能 工程类 下游(制造业) 运营管理 操作系统 古生物学 生物信息学 哲学 岩土工程 计算机安全 认识论 生物
作者
Zhengsong Wang,Shengnan Tang,Yanqiu Yang,Yeqiu Chen,Le Yang
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (27): 24441-24453
标识
DOI:10.1021/acsomega.3c02199
摘要

In the context of Pharma 4.0, pharmaceutical quality control (PQC) is beset by issues such as uncertainties from ever-changing critical material attributes and strong coupling between variables in the multi-unit pharmaceutical tablet manufacturing process (PTMP), and how to timely adjust the operational variables to deal with such challenges has become a key problem in PQC. In this study, we propose a novel data-knowledge-driven modeling and operational adjustment framework for PTMP by integrating Bayesian network (BN) and case-based reasoning (CBR). At the modeling level, first, a distributed concept is introduced, i.e., the BN model for each subunit of PTMP is established in accordance with the operation process sequence, and the transition variables are given by the BN model established first and retrieved as the new query for the next unit. Once the BN models of all subunits are built, they are integrated into a global BN model. At the operational adjustment level, by taking the expected critical quality attributes (CQAs) and related prior information as evidence, the operational adjustment is achieved through global BN reasoning. Finally, the case study in a sprayed fluidized-bed granulation-based PTMP demonstrates the feasibility and effectiveness in improving the terminal CQAs of the proposed method, which is also compared with other methods to showcase its efficacy and merits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
许子健发布了新的文献求助10
2秒前
3秒前
fanpengzhen发布了新的文献求助10
3秒前
yaowei完成签到,获得积分10
4秒前
铅笔995完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
爆米花应助徐昊雯采纳,获得10
5秒前
5秒前
123完成签到 ,获得积分10
6秒前
可靠远山完成签到 ,获得积分10
6秒前
6秒前
太阳完成签到,获得积分10
6秒前
evergarden发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
TNT应助liyi采纳,获得10
7秒前
fyfly发布了新的文献求助10
8秒前
8秒前
8秒前
典雅的俊驰应助xun采纳,获得30
8秒前
开放的柚子完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
可靠远山关注了科研通微信公众号
10秒前
10秒前
HopeStar完成签到,获得积分10
10秒前
11秒前
失眠的霸完成签到,获得积分10
12秒前
RHLVE应助戚薇采纳,获得20
12秒前
12秒前
wjx发布了新的文献求助10
12秒前
shuangcheng发布了新的文献求助10
12秒前
charm12发布了新的文献求助10
12秒前
研友_VZG7GZ应助fyfly采纳,获得10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646