清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images

分割 计算机科学 人工智能 深度学习 图像分割 基线(sea) 模式识别(心理学) 机器学习 海洋学 地质学
作者
Guangqi Liu,Qinghai Ding,Haibo Luo,Min Sha,Xiang Li,Moran Ju
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106194-106194 被引量:37
标识
DOI:10.1016/j.compbiomed.2022.106194
摘要

The segmentation of cervical cytology images plays an important role in the automatic analysis of cervical cytology screening. Although deep learning-based segmentation methods are well-developed in other image segmentation areas, their application in the segmentation of cervical cytology images is still in the early stage. The most important reason for the slow progress is the lack of publicly available and high-quality datasets, and the study on the deep learning-based segmentation methods may be hampered by the present datasets which are either artificial or plagued by the issue of false-negative objects. In this paper, we develop a new dataset of cervical cytology images named Cx22, which consists of the completely annotated labels of the cellular instances based on the open-source images released by our institute previously. Firstly, we meticulously delineate the contours of 14,946 cellular instances in1320 images that are generated by our proposed ROI-based label cropping algorithm. Then, we propose the baseline methods for the deep learning-based semantic and instance segmentation tasks based on Cx22. Finally, through the experiments, we validate the task suitability of Cx22, and the results reveal the impact of false-negative objects on the performance of the baseline methods. Based on our work, Cx22 can provide a foundation for fellow researchers to develop high-performance deep learning-based methods for the segmentation of cervical cytology images. Other detailed information and step-by-step guidance on accessing the dataset are made available to fellow researchers at https://github.com/LGQ330/Cx22.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
23秒前
34秒前
研友_nxw2xL完成签到,获得积分10
46秒前
51秒前
muriel完成签到,获得积分10
52秒前
英俊的铭应助abcdefg采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
back you up应助科研通管家采纳,获得30
54秒前
back you up应助科研通管家采纳,获得30
54秒前
胖鲤鱼完成签到,获得积分10
1分钟前
ShengjuChen完成签到 ,获得积分10
1分钟前
1分钟前
abcdefg发布了新的文献求助10
1分钟前
joyce完成签到,获得积分10
1分钟前
2分钟前
Aria发布了新的文献求助10
2分钟前
义气的玉米完成签到 ,获得积分10
2分钟前
Aria完成签到,获得积分10
2分钟前
Spring完成签到,获得积分10
2分钟前
千帆完成签到 ,获得积分10
2分钟前
结实的寄柔完成签到,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
back you up应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
back you up应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
爆米花应助葛力采纳,获得10
3分钟前
雪酪芋泥球完成签到 ,获得积分10
3分钟前
阿巴完成签到 ,获得积分10
4分钟前
4分钟前
FashionBoy应助正在跳舞的猪采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228146
关于积分的说明 9778630
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003