Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images

分割 计算机科学 人工智能 深度学习 图像分割 基线(sea) 模式识别(心理学) 机器学习 海洋学 地质学
作者
Guangqi Liu,Qinghai Ding,Haibo Luo,Min Sha,Xiang Li,Moran Ju
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106194-106194 被引量:37
标识
DOI:10.1016/j.compbiomed.2022.106194
摘要

The segmentation of cervical cytology images plays an important role in the automatic analysis of cervical cytology screening. Although deep learning-based segmentation methods are well-developed in other image segmentation areas, their application in the segmentation of cervical cytology images is still in the early stage. The most important reason for the slow progress is the lack of publicly available and high-quality datasets, and the study on the deep learning-based segmentation methods may be hampered by the present datasets which are either artificial or plagued by the issue of false-negative objects. In this paper, we develop a new dataset of cervical cytology images named Cx22, which consists of the completely annotated labels of the cellular instances based on the open-source images released by our institute previously. Firstly, we meticulously delineate the contours of 14,946 cellular instances in1320 images that are generated by our proposed ROI-based label cropping algorithm. Then, we propose the baseline methods for the deep learning-based semantic and instance segmentation tasks based on Cx22. Finally, through the experiments, we validate the task suitability of Cx22, and the results reveal the impact of false-negative objects on the performance of the baseline methods. Based on our work, Cx22 can provide a foundation for fellow researchers to develop high-performance deep learning-based methods for the segmentation of cervical cytology images. Other detailed information and step-by-step guidance on accessing the dataset are made available to fellow researchers at https://github.com/LGQ330/Cx22.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝大炮发布了新的文献求助10
1秒前
2秒前
wtdd完成签到,获得积分20
2秒前
爱吃西瓜应助huangyao采纳,获得10
2秒前
2秒前
3秒前
九月发布了新的文献求助10
3秒前
葫芦发布了新的文献求助20
4秒前
学术底层完成签到,获得积分10
4秒前
dzy1317完成签到,获得积分10
7秒前
优秀若剑完成签到,获得积分10
7秒前
宁静致远发布了新的文献求助10
8秒前
9秒前
9秒前
fiona7777完成签到,获得积分10
10秒前
12秒前
左鞅完成签到 ,获得积分10
12秒前
松溪乾完成签到,获得积分10
12秒前
Singularity应助王毅采纳,获得10
12秒前
13秒前
飞快的代天完成签到,获得积分10
13秒前
海之恋心发布了新的文献求助10
14秒前
14秒前
15秒前
蛋挞发布了新的文献求助10
16秒前
fim461847完成签到,获得积分20
16秒前
无聊的慕凝应助整齐依瑶采纳,获得10
16秒前
pj完成签到,获得积分10
17秒前
17秒前
开放的水壶完成签到,获得积分10
17秒前
星辰大海应助优秀若剑采纳,获得20
18秒前
lyj完成签到 ,获得积分10
18秒前
orixero应助奔跑吧,傻苗苗采纳,获得10
18秒前
于芋菊发布了新的文献求助100
18秒前
华仔应助不爱洗澡的小玲采纳,获得10
18秒前
19秒前
在水一方应助九月采纳,获得10
19秒前
20秒前
fim461847发布了新的文献求助10
20秒前
蛋挞完成签到,获得积分20
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125302
求助须知:如何正确求助?哪些是违规求助? 2775637
关于积分的说明 7727256
捐赠科研通 2431090
什么是DOI,文献DOI怎么找? 1291693
科研通“疑难数据库(出版商)”最低求助积分说明 622229
版权声明 600368