Echocardiographic Detection of Regional Wall Motion Abnormalities Using Artificial Intelligence Compared to Human Readers

医学 人工智能 运动(物理) 内科学 计算机视觉 计算机科学
作者
Jeremy Slivnick,Nils Gessert,Juan Ignacio Cotella,Lucas Silva de Oliveira,Nicola Pezzotti,Parastou Eslami,Ali M. Sadeghi,Simon Wehle,David Prabhu,Irina Waechter‐Stehle,Ashish M. Chaudhari,Teodora Szasz,Linda Lee,Marie Altenburg,Giancarlo Saldana,Michael Randazzo,Jeanne M. DeCara,Karima Addetia,Victor Mor‐Avi,Roberto M. Lang
出处
期刊:Journal of The American Society of Echocardiography [Elsevier]
卷期号:37 (7): 655-663 被引量:13
标识
DOI:10.1016/j.echo.2024.03.017
摘要

Abstract

Background

Although regional wall motion abnormality (RWMA) detection is foundational to transthoracic echocardiography (TTE), current methods are prone to inter-observer variability. We aimed to develop a deep learning (DL) model for RWMA assessment and compare it to expert and novice readers.

Methods

We used 15,746 TTE studies—including 25,529 apical videos—which were split into training, validation, and test datasets. A convolutional neural network was trained and validated using apical 2-, 3-, and 4-chamber videos to predict the presence of RWMA in 7 regions defined by coronary perfusion territories, using the ground truth derived from clinical TTE reports. Within the test cohort, DL model accuracy was compared to 6 expert and 3 novice readers using F1 score evaluation, with the ground truth of RWMA defined by expert readers. Significance between the DL model and novices was assessed using the permutation test.

Results

Within the test cohort, the DL model accurately identified any RWMA with AUC 0.96 (0.92-0.98). The mean F1 scores of the experts and the DL model were numerically similar for 6/7 regions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), inferoseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any RWMA (90 vs 94 respectively), while in the anteroseptal region F1 score of the DL model was lower than the experts (75 vs 89). Using F1 scores, the DL model outperformed both novices 1 (p=0.002) and 2 (p=0.02) for the detection of any RWMA.

Conclusions

DL provides accurate detection of RWMA which was comparable to experts and outperformed a majority of novices. DL may improve the efficiency of RWMA assessment and serve as a teaching tool for novices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
星辰大海应助Wqian采纳,获得10
5秒前
5秒前
9秒前
17秒前
18秒前
科目三应助朴素的松采纳,获得10
19秒前
Jodie发布了新的文献求助10
22秒前
22秒前
Heinrich完成签到,获得积分10
23秒前
Lucas应助inter采纳,获得10
27秒前
无极微光应助科研通管家采纳,获得20
30秒前
Orange应助科研通管家采纳,获得10
30秒前
Verity应助科研通管家采纳,获得10
30秒前
30秒前
丘比特应助科研通管家采纳,获得10
30秒前
30秒前
苏新天完成签到 ,获得积分10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
Liangang应助科研通管家采纳,获得10
30秒前
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
huanger应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
小新应助科研通管家采纳,获得10
31秒前
香蕉觅云应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
一叶知秋应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
33秒前
跳跃的翼完成签到,获得积分10
36秒前
健忘可愁完成签到,获得积分10
37秒前
跳跃的翼发布了新的文献求助10
38秒前
39秒前
无花果应助加百莉采纳,获得10
42秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550