Echocardiographic Detection of Regional Wall Motion Abnormalities Using Artificial Intelligence Compared to Human Readers

医学 人工智能 运动(物理) 内科学 计算机视觉 计算机科学
作者
Jeremy Slivnick,Nils Gessert,Juan Ignacio Cotella,Lucas Silva de Oliveira,Nicola Pezzotti,Parastou Eslami,Ali M. Sadeghi,Simon Wehle,David Prabhu,Irina Waechter‐Stehle,Ashish M. Chaudhari,Teodora Szasz,Linda Lee,Marie Altenburg,Giancarlo Saldana,Michael Randazzo,Jeanne M. DeCara,Karima Addetia,Victor Mor‐Avi,Roberto M. Lang
出处
期刊:Journal of The American Society of Echocardiography [Elsevier]
卷期号:37 (7): 655-663 被引量:13
标识
DOI:10.1016/j.echo.2024.03.017
摘要

Abstract

Background

Although regional wall motion abnormality (RWMA) detection is foundational to transthoracic echocardiography (TTE), current methods are prone to inter-observer variability. We aimed to develop a deep learning (DL) model for RWMA assessment and compare it to expert and novice readers.

Methods

We used 15,746 TTE studies—including 25,529 apical videos—which were split into training, validation, and test datasets. A convolutional neural network was trained and validated using apical 2-, 3-, and 4-chamber videos to predict the presence of RWMA in 7 regions defined by coronary perfusion territories, using the ground truth derived from clinical TTE reports. Within the test cohort, DL model accuracy was compared to 6 expert and 3 novice readers using F1 score evaluation, with the ground truth of RWMA defined by expert readers. Significance between the DL model and novices was assessed using the permutation test.

Results

Within the test cohort, the DL model accurately identified any RWMA with AUC 0.96 (0.92-0.98). The mean F1 scores of the experts and the DL model were numerically similar for 6/7 regions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), inferoseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any RWMA (90 vs 94 respectively), while in the anteroseptal region F1 score of the DL model was lower than the experts (75 vs 89). Using F1 scores, the DL model outperformed both novices 1 (p=0.002) and 2 (p=0.02) for the detection of any RWMA.

Conclusions

DL provides accurate detection of RWMA which was comparable to experts and outperformed a majority of novices. DL may improve the efficiency of RWMA assessment and serve as a teaching tool for novices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真的方盒完成签到 ,获得积分10
刚刚
小木虫完成签到,获得积分10
刚刚
1秒前
1秒前
訾化端发布了新的文献求助30
2秒前
高飞完成签到,获得积分10
3秒前
4秒前
难过的醉香完成签到,获得积分10
4秒前
小笼包完成签到,获得积分10
5秒前
WFLLL完成签到,获得积分10
9秒前
Jian完成签到,获得积分20
10秒前
万能图书馆应助訾化端采纳,获得10
10秒前
36038138完成签到 ,获得积分10
10秒前
ldkshifo完成签到,获得积分10
12秒前
dhn完成签到,获得积分10
12秒前
12秒前
win完成签到,获得积分10
13秒前
13秒前
能干的尔柳完成签到,获得积分10
13秒前
传统的盼曼完成签到,获得积分20
13秒前
LvCR完成签到 ,获得积分10
15秒前
清风明月完成签到 ,获得积分10
16秒前
16秒前
17秒前
风趣秋白完成签到,获得积分0
17秒前
打打应助甘宜采纳,获得10
18秒前
leeshho完成签到,获得积分10
19秒前
系小小鱼啊完成签到,获得积分10
19秒前
凌凌子完成签到 ,获得积分10
20秒前
Hello应助bwh采纳,获得10
23秒前
hbl完成签到,获得积分10
24秒前
愤怒的如天完成签到 ,获得积分10
27秒前
肯德鸭完成签到,获得积分10
28秒前
小瑞完成签到 ,获得积分10
28秒前
杂草的生活完成签到,获得积分10
31秒前
31秒前
32秒前
34秒前
自觉南风完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173