Echocardiographic Detection of Regional Wall Motion Abnormalities Using Artificial Intelligence Compared to Human Readers

医学 人工智能 运动(物理) 内科学 计算机视觉 计算机科学
作者
Jeremy Slivnick,Nils Gessert,Juan Ignacio Cotella,Lucas Silva de Oliveira,Nicola Pezzotti,Parastou Eslami,Ali M. Sadeghi,Simon Wehle,David Prabhu,Irina Waechter‐Stehle,Ashish M. Chaudhari,Teodora Szasz,Linda Lee,Marie Altenburg,Giancarlo Saldana,Michael Randazzo,Jeanne M. DeCara,Karima Addetia,Victor Mor‐Avi,Roberto M. Lang
出处
期刊:Journal of The American Society of Echocardiography [Elsevier]
卷期号:37 (7): 655-663 被引量:13
标识
DOI:10.1016/j.echo.2024.03.017
摘要

Abstract

Background

Although regional wall motion abnormality (RWMA) detection is foundational to transthoracic echocardiography (TTE), current methods are prone to inter-observer variability. We aimed to develop a deep learning (DL) model for RWMA assessment and compare it to expert and novice readers.

Methods

We used 15,746 TTE studies—including 25,529 apical videos—which were split into training, validation, and test datasets. A convolutional neural network was trained and validated using apical 2-, 3-, and 4-chamber videos to predict the presence of RWMA in 7 regions defined by coronary perfusion territories, using the ground truth derived from clinical TTE reports. Within the test cohort, DL model accuracy was compared to 6 expert and 3 novice readers using F1 score evaluation, with the ground truth of RWMA defined by expert readers. Significance between the DL model and novices was assessed using the permutation test.

Results

Within the test cohort, the DL model accurately identified any RWMA with AUC 0.96 (0.92-0.98). The mean F1 scores of the experts and the DL model were numerically similar for 6/7 regions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), inferoseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any RWMA (90 vs 94 respectively), while in the anteroseptal region F1 score of the DL model was lower than the experts (75 vs 89). Using F1 scores, the DL model outperformed both novices 1 (p=0.002) and 2 (p=0.02) for the detection of any RWMA.

Conclusions

DL provides accurate detection of RWMA which was comparable to experts and outperformed a majority of novices. DL may improve the efficiency of RWMA assessment and serve as a teaching tool for novices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏家楠木琳完成签到,获得积分10
刚刚
淡淡金针菇完成签到 ,获得积分10
刚刚
qianshu完成签到,获得积分0
1秒前
慕青应助哥哥采纳,获得10
1秒前
ZJJ完成签到,获得积分10
2秒前
初楠完成签到 ,获得积分10
2秒前
长情的涔完成签到 ,获得积分10
3秒前
刘师兄吧完成签到,获得积分10
4秒前
风之飘渺者也完成签到,获得积分10
6秒前
aki空中飞跃完成签到,获得积分10
7秒前
Zzz完成签到,获得积分10
7秒前
7秒前
追风筝的少女完成签到 ,获得积分10
8秒前
牧星河完成签到,获得积分10
9秒前
9秒前
橙子完成签到,获得积分10
10秒前
lili完成签到,获得积分10
11秒前
傅寒天完成签到,获得积分10
11秒前
甜甜友容完成签到,获得积分10
11秒前
博士二三事完成签到,获得积分10
11秒前
笨笨发布了新的文献求助10
11秒前
suise完成签到,获得积分10
11秒前
11秒前
123完成签到,获得积分10
11秒前
歪比巴波完成签到,获得积分10
12秒前
Bismarck完成签到,获得积分10
12秒前
小太阳完成签到,获得积分10
13秒前
加肥狗发布了新的文献求助10
13秒前
14秒前
秦磊完成签到,获得积分10
15秒前
boyue完成签到,获得积分10
15秒前
汉堡包应助gzmejiji采纳,获得10
16秒前
碧蓝的母鸡完成签到,获得积分10
17秒前
shadow完成签到,获得积分10
18秒前
小美酱发布了新的文献求助10
18秒前
li完成签到 ,获得积分10
19秒前
吕yj完成签到,获得积分10
21秒前
Dado应助A SHE采纳,获得10
22秒前
QW111完成签到,获得积分10
22秒前
维时发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568370
求助须知:如何正确求助?哪些是违规求助? 4652947
关于积分的说明 14702495
捐赠科研通 4594744
什么是DOI,文献DOI怎么找? 2521254
邀请新用户注册赠送积分活动 1492932
关于科研通互助平台的介绍 1463734