重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Echocardiographic Detection of Regional Wall Motion Abnormalities Using Artificial Intelligence Compared to Human Readers

医学 人工智能 运动(物理) 内科学 计算机视觉 计算机科学
作者
Jeremy Slivnick,Nils Gessert,Juan Ignacio Cotella,Lucas Silva de Oliveira,Nicola Pezzotti,Parastou Eslami,Ali M. Sadeghi,Simon Wehle,David Prabhu,Irina Waechter‐Stehle,Ashish M. Chaudhari,Teodora Szasz,Linda Lee,Marie Altenburg,Giancarlo Saldana,Michael Randazzo,Jeanne M. DeCara,Karima Addetia,Victor Mor‐Avi,Roberto M. Lang
出处
期刊:Journal of The American Society of Echocardiography [Elsevier]
卷期号:37 (7): 655-663 被引量:13
标识
DOI:10.1016/j.echo.2024.03.017
摘要

Abstract

Background

Although regional wall motion abnormality (RWMA) detection is foundational to transthoracic echocardiography (TTE), current methods are prone to inter-observer variability. We aimed to develop a deep learning (DL) model for RWMA assessment and compare it to expert and novice readers.

Methods

We used 15,746 TTE studies—including 25,529 apical videos—which were split into training, validation, and test datasets. A convolutional neural network was trained and validated using apical 2-, 3-, and 4-chamber videos to predict the presence of RWMA in 7 regions defined by coronary perfusion territories, using the ground truth derived from clinical TTE reports. Within the test cohort, DL model accuracy was compared to 6 expert and 3 novice readers using F1 score evaluation, with the ground truth of RWMA defined by expert readers. Significance between the DL model and novices was assessed using the permutation test.

Results

Within the test cohort, the DL model accurately identified any RWMA with AUC 0.96 (0.92-0.98). The mean F1 scores of the experts and the DL model were numerically similar for 6/7 regions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), inferoseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any RWMA (90 vs 94 respectively), while in the anteroseptal region F1 score of the DL model was lower than the experts (75 vs 89). Using F1 scores, the DL model outperformed both novices 1 (p=0.002) and 2 (p=0.02) for the detection of any RWMA.

Conclusions

DL provides accurate detection of RWMA which was comparable to experts and outperformed a majority of novices. DL may improve the efficiency of RWMA assessment and serve as a teaching tool for novices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhouzhou完成签到 ,获得积分10
1秒前
1秒前
YW完成签到,获得积分10
1秒前
一路向北发布了新的文献求助30
1秒前
1秒前
1秒前
Ava应助瘦瘦牛排采纳,获得10
2秒前
颖火虫发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
wei完成签到 ,获得积分10
2秒前
3秒前
刻苦短靴发布了新的文献求助10
5秒前
fveie发布了新的文献求助10
5秒前
5秒前
蓝波酱发布了新的文献求助10
5秒前
5秒前
qwq关注了科研通微信公众号
6秒前
shellyAPTX4869完成签到,获得积分10
6秒前
老实的小笼包完成签到,获得积分10
6秒前
6秒前
yuanyeyy发布了新的文献求助10
6秒前
6秒前
6秒前
北极星发布了新的文献求助10
7秒前
浮游应助pick_up采纳,获得10
7秒前
Lg完成签到,获得积分10
7秒前
英俊的铭应助feihu采纳,获得10
7秒前
7秒前
7秒前
科研通AI6应助xuleiman采纳,获得10
8秒前
8秒前
大饼完成签到 ,获得积分10
8秒前
Dillen完成签到,获得积分10
8秒前
DIPLO完成签到,获得积分10
8秒前
Dada完成签到,获得积分10
9秒前
yier发布了新的文献求助10
9秒前
wanci应助尊敬的高跟鞋采纳,获得10
9秒前
干净依秋发布了新的文献求助10
9秒前
xiaodusb完成签到 ,获得积分10
10秒前
牛爷爷完成签到,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465885
求助须知:如何正确求助?哪些是违规求助? 4570113
关于积分的说明 14322653
捐赠科研通 4496569
什么是DOI,文献DOI怎么找? 2463432
邀请新用户注册赠送积分活动 1452314
关于科研通互助平台的介绍 1427516