数量性状位点
等位基因
遗传学
粮食品质
人口
粒度
遗传变异
基因
生物
基因型
驯化
农学
材料科学
冶金
人口学
社会学
作者
Waseem Abbas,Abdullah Shalmani,Jian Zhang,Qi Sun,Chunyu Zhang,Wei Li,Yana Cui,Meng Xiong,Yibo Li
摘要
Summary Grain size is a crucial agronomic trait that affects stable yield, appearance, milling quality, and domestication in rice. However, the molecular and genetic relationships among QTL genes (QTGs) underlying natural variation for grain size remain elusive. Here, we identified a novel QTG SGW5 ( suppressor of gw5 ) by map‐based cloning using an F 2 segregation population by fixing same genotype of the master QTG GW5 . SGW5 positively regulates grain width by influencing cell division and cell size in spikelet hulls. Two nearly isogenic lines exhibited a significant differential expression of SGW5 and a 12.2% increase in grain yield. Introducing the higher expression allele into the genetic background containing the lower expression allele resulted in increased grain width, while its knockout resulted in shorter grain hulls and dwarf plants. Moreover, a cis ‐element variation in the SGW5 promoter influenced its differential binding affinity for the WRKY53 transcription factor, causing the differential SGW5 expression, which ultimately leads to grain size variation. GW5 physically and genetically interacts with WRKY53 to suppress the expression of SGW5 . These findings elucidated a new pathway for grain size regulation by the GW5‐WRKY53 ‐SGW5 module and provided a novel case for generally uncovering QTG interactions underlying the genetic diversity of an important trait in crops.
科研通智能强力驱动
Strongly Powered by AbleSci AI