What determines the performance of digital transformation in manufacturing enterprises? A study on the linkage effects based on fs/QCA method

数字化转型 联动装置(软件) 过程(计算) 制造工程 过程管理 制造业 定性比较分析 先进制造业 计算机集成制造 计算机科学 新产品开发 转化(遗传学) 产品(数学) 质量(理念) 工业工程 业务 工程类 营销 生物化学 化学 哲学 几何学 数学 认识论 机器学习 操作系统 万维网 基因
作者
Meng Shang,Chunjie Jia,LingLing Zhong,Junwei Cao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:450: 141856-141856 被引量:9
标识
DOI:10.1016/j.jclepro.2024.141856
摘要

The achievement of high-quality development in the manufacturing industry can be effectively realized through the process of digital transformation. The enhancement of digital transformation performance in manufacturing enterprises has emerged as a prominent topic of interest for both corporate entities and the academic community. Drawing upon the theoretical framework of the TOE model, this article presents a comprehensive analytical framework aimed at understanding the performance of digital transformation in manufacturing enterprises. By assessing a sample of 180 manufacturing enterprises currently undergoing digital transformation, this study employs the fuzzy-set qualitative comparative analysis (fs/QCA) methodology to study the interrelated effects and strategic choices pertaining to technology, organizational structure, and environmental conditions, all of which contribute to the improvement of digital transformation performance in manufacturing enterprises. The findings of the research indicate the following: (1) The attainment of high performance in digital transformation in manufacturing enterprises does not solely rely on a single condition, whether it pertains to the optimization of manufacturing processes or the development of new products. (2) High performance in digital transformation is the result of multiple interacting factors. Various causal configurations, such as "organization-environment oriented", "all-factor driven", and "technology-environment oriented", which have the characteristics of "multiple concurrency" and "different paths leading to the same goal." (3) In comparison, achieving high performance in manufacturing process optimization requires a higher degree of complexity than attaining high performance in new product development. Additionally, it is challenging to achieve high performance in new product development with a sole reliance on a single technological foundation and external environmental support. These research conclusions contribute to the existing body of knowledge on digital transformation performance, enhancing our understanding of the complex factors that underlie high performance in digital transformation in manufacturing enterprises. Importantly, they hold practical significance in improving the performance of digital transformation in the manufacturing sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助摸俞采纳,获得10
刚刚
lalala发布了新的文献求助10
1秒前
hug完成签到,获得积分0
2秒前
没空看发布了新的文献求助10
3秒前
桐桐应助DDd采纳,获得10
4秒前
思维隋发布了新的文献求助10
4秒前
北辰发布了新的文献求助10
4秒前
5秒前
6秒前
00完成签到,获得积分10
6秒前
7秒前
怡然乌发布了新的文献求助10
10秒前
摸俞发布了新的文献求助10
10秒前
lamer完成签到,获得积分10
10秒前
pfuhh发布了新的文献求助10
11秒前
QQ完成签到,获得积分10
11秒前
yshu完成签到,获得积分10
12秒前
13秒前
大个应助朝朝采纳,获得10
13秒前
13秒前
韩菲菲关注了科研通微信公众号
14秒前
Rachel发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
Lucas应助风趣的凝雁采纳,获得10
18秒前
zhuyao完成签到 ,获得积分10
18秒前
q792309106发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
航某人完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
24秒前
科研通AI5应助wangruiyang采纳,获得10
24秒前
云辞忧发布了新的文献求助10
25秒前
斯文败类应助纷纭采纳,获得10
26秒前
霍凡白完成签到,获得积分10
27秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144