Transcriptomic and Neuroimaging Data Integration Enhances Machine Learning Classification of Schizophrenia

神经影像学 精神分裂症(面向对象编程) 转录组 神经科学 计算机科学 心理学 人工智能 机器学习 生物 精神科 基因 基因表达 生物化学
作者
Mengya Wang,Shu‐Wan Zhao,Di Wu,Yahong Zhang,Yan-Kun Han,Kun Zhao,Ting Qi,Yong Liu,Long‐Biao Cui,Yongbin Wei
标识
DOI:10.1093/psyrad/kkae005
摘要

Abstract Background Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential diagnostic markers for schizophrenia. Objective We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia classification models. Methods We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and functional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learning integration framework, together with several conventional machine learning methods and neural networks for patient classification. Results We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76–0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major contribution to disease classification. Conclusion We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing treatment regimens in schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
damnxas完成签到,获得积分10
2秒前
3秒前
桐桐应助热心小松鼠采纳,获得10
4秒前
Hello应助热心小松鼠采纳,获得10
4秒前
Ava应助热心小松鼠采纳,获得10
4秒前
科目三应助热心小松鼠采纳,获得10
4秒前
Owen应助热心小松鼠采纳,获得10
4秒前
丘比特应助热心小松鼠采纳,获得10
4秒前
情怀应助热心小松鼠采纳,获得10
4秒前
小蘑菇应助热心小松鼠采纳,获得10
4秒前
深情安青应助热心小松鼠采纳,获得10
4秒前
科目三应助ysy采纳,获得10
4秒前
思源应助热心小松鼠采纳,获得10
4秒前
5秒前
dd发布了新的文献求助10
7秒前
华贞完成签到,获得积分10
7秒前
8秒前
AlanLi发布了新的文献求助10
8秒前
CodeCraft应助cc采纳,获得10
11秒前
风趣青槐完成签到,获得积分10
11秒前
Ava应助honglingjing采纳,获得10
12秒前
shine完成签到,获得积分10
12秒前
努力学习完成签到,获得积分10
12秒前
小眼儿发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
15秒前
shine发布了新的文献求助20
16秒前
April发布了新的文献求助10
17秒前
努力学习发布了新的文献求助10
17秒前
17秒前
一只龟龟发布了新的文献求助10
18秒前
18秒前
Sun发布了新的文献求助10
19秒前
handong完成签到,获得积分10
19秒前
太叔丹翠完成签到 ,获得积分10
19秒前
欧博发布了新的文献求助10
20秒前
湫枫完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432