Transcriptomic and Neuroimaging Data Integration Enhances Machine Learning Classification of Schizophrenia

神经影像学 精神分裂症(面向对象编程) 转录组 神经科学 计算机科学 心理学 人工智能 机器学习 生物 精神科 基因 基因表达 生物化学
作者
Mengya Wang,Shu‐Wan Zhao,Di Wu,Yahong Zhang,Yan-Kun Han,Kun Zhao,Ting Qi,Yong Liu,Long‐Biao Cui,Yongbin Wei
标识
DOI:10.1093/psyrad/kkae005
摘要

Abstract Background Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential diagnostic markers for schizophrenia. Objective We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia classification models. Methods We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and functional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learning integration framework, together with several conventional machine learning methods and neural networks for patient classification. Results We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76–0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major contribution to disease classification. Conclusion We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing treatment regimens in schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
毅青6796完成签到,获得积分10
3秒前
3秒前
顾勇完成签到,获得积分10
4秒前
稳重芷卉完成签到,获得积分10
4秒前
左丘完成签到,获得积分10
4秒前
科研通AI2S应助Renhong采纳,获得10
5秒前
neuroman发布了新的文献求助10
7秒前
zyh应助粉红三倍速采纳,获得10
7秒前
烟花应助BEN采纳,获得10
7秒前
愤怒的勒发布了新的文献求助10
8秒前
皖元槐完成签到,获得积分10
9秒前
两元小黄完成签到,获得积分10
10秒前
乐观明雪完成签到,获得积分20
10秒前
12秒前
yo1nang发布了新的文献求助30
12秒前
清新的孤风完成签到,获得积分10
13秒前
谢x07发布了新的文献求助10
13秒前
13秒前
隐形曼青应助eerrttyyuu采纳,获得10
14秒前
15秒前
15秒前
15秒前
小马甲应助刘七岁采纳,获得10
15秒前
111完成签到,获得积分10
15秒前
Daisy发布了新的文献求助10
17秒前
爱学习的源儿完成签到,获得积分10
18秒前
执着完成签到,获得积分10
18秒前
Charlie发布了新的文献求助10
18秒前
Gzdaigzn完成签到,获得积分10
18秒前
neuroman完成签到,获得积分10
18秒前
zhf发布了新的文献求助30
18秒前
宓函发布了新的文献求助10
19秒前
琪琪的发布了新的文献求助10
19秒前
Akim应助亚秋采纳,获得10
20秒前
堇笙vv发布了新的文献求助10
21秒前
香蕉觅云应助dlfg采纳,获得10
25秒前
科研通AI2S应助宵荷采纳,获得10
25秒前
阿秋发布了新的社区帖子
28秒前
所所应助聪仔采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449