Transcriptomic and Neuroimaging Data Integration Enhances Machine Learning Classification of Schizophrenia

神经影像学 精神分裂症(面向对象编程) 转录组 神经科学 计算机科学 心理学 人工智能 机器学习 生物 精神科 基因 基因表达 生物化学
作者
Mengya Wang,Shu‐Wan Zhao,Di Wu,Yahong Zhang,Yan-Kun Han,Kun Zhao,Ting Qi,Yong Liu,Long‐Biao Cui,Yongbin Wei
标识
DOI:10.1093/psyrad/kkae005
摘要

Abstract Background Schizophrenia is a polygenic disorder associated with changes in brain structure and function. Integrating macroscale brain features with microscale genetic data may provide a more complete overview of the disease etiology and may serve as potential diagnostic markers for schizophrenia. Objective We aim to systematically evaluate the impact of multi-scale neuroimaging and transcriptomic data fusion in schizophrenia classification models. Methods We collected brain imaging data and blood RNA sequencing data from 43 patients with schizophrenia and 60 age- and gender-matched healthy controls, and we extracted multi-omics features of macroscale brain morphology, brain structural and functional connectivity, and gene transcription of schizophrenia risk genes. Multi-scale data fusion was performed using a machine learning integration framework, together with several conventional machine learning methods and neural networks for patient classification. Results We found that multi-omics data fusion in conventional machine learning models achieved the highest accuracy (AUC ~0.76–0.92) in contrast to the single-modality models, with AUC improvements of 8.88 to 22.64%. Similar findings were observed for the neural network, showing an increase of 16.57% for the multimodal classification model (accuracy 71.43%) compared to the single-modal average. In addition, we identified several brain regions in the left posterior cingulate and right frontal pole that made a major contribution to disease classification. Conclusion We provide empirical evidence for the increased accuracy achieved by imaging genetic data integration in schizophrenia classification. Multi-scale data fusion holds promise for enhancing diagnostic precision, facilitating early detection and personalizing treatment regimens in schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助123456采纳,获得10
刚刚
1秒前
淡定猎豹完成签到,获得积分20
1秒前
2秒前
changping应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
lalala应助科研通管家采纳,获得10
3秒前
lasalu应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得100
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
4秒前
lalala应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
chenqiumu应助科研通管家采纳,获得30
4秒前
淡定猎豹发布了新的文献求助10
4秒前
852应助科研通管家采纳,获得10
5秒前
lalala应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得30
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
6666发布了新的文献求助10
5秒前
慕青应助Painkiller_采纳,获得10
6秒前
龙龙冲发布了新的文献求助20
8秒前
养狗了没有完成签到 ,获得积分10
8秒前
小鱼儿发布了新的文献求助10
9秒前
肥猫发布了新的文献求助30
10秒前
懦弱的博涛给懦弱的博涛的求助进行了留言
12秒前
酷波er应助xiao采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400