AI-driven Characterization of Solid Pulmonary Nodules on CT Imaging for Enhanced Malignancy Prediction in Small-sized Lung Adenocarcinoma

医学 恶性肿瘤 肺癌 腺癌 放射科 正电子发射断层摄影术 实体瘤 转移 淋巴结 磨玻璃样改变 病理 癌症 内科学
作者
Yujin Kudo,Taiyo Nakamura,Jun Matsubayashi,Akimichi Ichinose,Y Goto,Ryosuke Amemiya,Jinho Park,Yoshihisa Shimada,Masatoshi Kakihana,Toshitaka Nagao,Tatsuo Ohira,Jun Masumoto,Norihiko Ikeda
出处
期刊:Clinical Lung Cancer [Elsevier]
卷期号:25 (5): 431-439 被引量:1
标识
DOI:10.1016/j.cllc.2024.04.015
摘要

Objectives Distinguishing solid nodules from nodules with ground-glass lesions in lung cancer is a critical diagnostic challenge, especially for tumors ≤2 cm. Human assessment of these nodules is associated with high inter-observer variability, which is why an objective and reliable diagnostic tool is necessary. This study focuses on artificial intelligence (AI) to automatically analyze such tumors and to develop prospective AI systems that can independently differentiate highly malignant nodules. Materials and Methods Our retrospective study analyzed 246 patients who were diagnosed with negative clinical lymph node metastases (cN0) using positron emission tomography-computed tomography (PET/CT) imaging and underwent surgical resection for lung adenocarcinoma. AI detected tumor sizes ≤2 cm in these patients. By utilizing AI to classify these nodules as solid (AI_solid) or non-solid (non-AI_solid) based on confidence scores, we aim to correlate AI determinations with pathological findings, thereby advancing the precision of preoperative assessments. Results Solid nodules identified by AI with a confidence score ≥0.87 showed significantly higher solid component volumes and proportions in patients with AI_solid than in those with non-AI_solid, with no differences in overall diameter or total volume of the tumors. Among patients with AI_solid, 16% demonstrated lymph node metastasis, and a significant 94% harbored invasive adenocarcinoma. Additionally, 44% were upstaging postoperatively. These AI_solid nodules represented high-grade malignancies. Conclusion In small-sized lung cancer diagnosed as cN0, AI automatically identifies tumors as solid nodules ≤2 cm and evaluates their malignancy preoperatively. The AI classification can inform lymph node assessment necessity in sublobar resections, reflecting metastatic potential. MicroAbstract This study utilized artificial intelligence (AI) to distinguish solid nodules from grand-grass nodules in in 246 patients with lung adenocarcinoma ≤2 cm in size. The classification of solid/non-solid nodules by AI was well correlated with pathological findings, demonstrating malignant potential in AI-identified solid nodules. This approach enhances the accuracy of preoperative diagnosis and improves treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jy完成签到 ,获得积分20
1秒前
健壮的涑完成签到 ,获得积分10
1秒前
科研通AI5应助勤劳影子采纳,获得10
2秒前
栗子发布了新的文献求助10
2秒前
3秒前
XHT驳回了LL应助
4秒前
4秒前
4秒前
hyp发布了新的文献求助10
4秒前
5秒前
6秒前
微笑香薇发布了新的文献求助10
6秒前
777完成签到,获得积分10
6秒前
7秒前
7秒前
黄丽军发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
小彻完成签到,获得积分10
8秒前
慕青应助研友_nxGqeL采纳,获得20
8秒前
8秒前
9秒前
shang发布了新的文献求助10
9秒前
Giroro_roro完成签到,获得积分10
9秒前
10秒前
完美世界应助橘子采纳,获得10
10秒前
三口发布了新的文献求助10
10秒前
CipherSage应助lisali采纳,获得10
11秒前
夏天来了发布了新的文献求助30
11秒前
dmj发布了新的文献求助10
11秒前
完美世界应助绿夏采纳,获得30
11秒前
dong发布了新的文献求助10
12秒前
ssssssssci完成签到,获得积分10
12秒前
12秒前
13秒前
牛牛发布了新的文献求助10
13秒前
思源应助初晴采纳,获得10
13秒前
景木游发布了新的文献求助10
14秒前
roy_chiang发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246