Dual‐Phase Reaction Sintering for Overcoming the Inherent Sintering Ability of Refractory Electrolytes in Protonic Ceramic Cells

烧结 材料科学 电解质 陶瓷 奥斯特瓦尔德成熟 相(物质) 化学工程 电化学 电导率 纳米技术 复合材料 电极 物理化学 化学 有机化学 工程类
作者
Junseok Kim,Jiwon Yun,W. Lee,Do‐Hyeong Kim,Puspendu Guha,Jin‐Ha Hwang,Deok‐Hwang Kwon,Sungeun Yang,Jong‐Ho Lee,Kyung Joong Yoon,Ji‐Won Son,Sahn Nahm,Sihyuk Choi,Ho‐Il Ji
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (26) 被引量:2
标识
DOI:10.1002/aenm.202400787
摘要

Abstract The proton‐conducting oxides, widely employed as electrolytes in ceramic electrochemical cells, exhibit remarkable proton conductivity that facilitates efficient energy conversion processes. However, their inherent refractory nature poses a challenge in producing chemically stoichiometric and physically dense electrolytes within devices. Here a novel approach is presented, dual‐phase reaction sintering, which can overcome the inherent low sintering ability of the representative BaCeO 3‐δ ‒BaZrO 3‐δ proton conducting oxides. This approach involves the simultaneous transformation of a two‐phase mixture (comprising fast‐sintering and slow‐sintering phases) into a complete single‐phase solid solution compound, along with the densification of the electrolyte, all accomplished within a single‐step heating cycle. During the dual‐phase reaction sintering process, the grains of the fast‐sintering phase experience rapid growth owing to their intrinsic superior sintering ability. Additionally, this growth is augmented by the Ostwald ripening behavior manifested by the smaller slow‐sintering phase. This synergistic strategy is validated using BaCe 0.4 Zr 0.4 Y 0.1 Yb 0.1 O 3‐δ , and its applicability in electrochemical cells is demonstrated, resulting in a significant enhancement in performance. These findings offer insights into streamlining the preparation of refractory ion‐conducting ceramic electrolytes while maintaining their intrinsic properties for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助小喻采纳,获得10
1秒前
2秒前
2秒前
3秒前
EL发布了新的文献求助10
3秒前
罗小球发布了新的文献求助10
6秒前
莫问今生完成签到,获得积分10
6秒前
笨笨芯发布了新的文献求助30
6秒前
7秒前
7秒前
8秒前
9秒前
12秒前
13秒前
ding应助lllllll采纳,获得10
15秒前
15秒前
16秒前
17秒前
17秒前
pluto应助板凳儿cc采纳,获得30
18秒前
小鼠星球发布了新的文献求助20
19秒前
xuhang完成签到,获得积分10
20秒前
dd发布了新的文献求助10
20秒前
等等发布了新的文献求助10
21秒前
21秒前
KAO_YU发布了新的文献求助10
21秒前
研友_48y70n完成签到,获得积分10
22秒前
22秒前
负责怡完成签到,获得积分20
22秒前
李健的小迷弟应助TTRRCEB采纳,获得10
23秒前
三三完成签到,获得积分10
23秒前
24秒前
司马天寿发布了新的文献求助10
28秒前
29秒前
猪猪朱发布了新的文献求助10
30秒前
30秒前
大模型应助dd采纳,获得10
31秒前
共享精神应助猩心采纳,获得10
31秒前
31秒前
S!发布了新的文献求助10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459815
求助须知:如何正确求助?哪些是违规求助? 3054040
关于积分的说明 9040262
捐赠科研通 2743383
什么是DOI,文献DOI怎么找? 1504849
科研通“疑难数据库(出版商)”最低求助积分说明 695430
邀请新用户注册赠送积分活动 694717