Potential rapid intraoperative cancer diagnosis using dynamic full-field optical coherence tomography and deep learning: A prospective cohort study in breast cancer patients

光学相干层析成像 医学 乳腺癌 前瞻性队列研究 医学物理学 放射科 癌症 肿瘤科 外科 内科学
作者
Shuwei Zhang,Bin Yang,Houpu Yang,Jin Zhao,Yuanyuan Zhang,Yuanxu Gao,Olivia Monteiro,Kang Zhang,Bo Liu,Shu Wang
出处
期刊:Science Bulletin [Elsevier]
被引量:2
标识
DOI:10.1016/j.scib.2024.03.061
摘要

An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin (H&E) histology, such as frozen sections, are time-, resource-, and labor-intensive, and involve specimen-consuming concerns. Here, we report a near-real-time automated cancer diagnosis workflow for breast cancer that combines dynamic full-field optical coherence tomography (D-FFOCT), a label-free optical imaging method, and deep learning for bedside tumor diagnosis during surgery. To classify the benign and malignant breast tissues, we conducted a prospective cohort trial. In the modeling group (n =182), D-FFOCT images were captured from April 26 to June 20, 2018, encompassing 48 benign lesions, 114 invasive ductal carcinoma (IDC), 10 invasive lobular carcinoma, 4 ductal carcinoma in situ (DCIS), and 6 rare tumors. Deep learning model was built up and fine-tuned in 10,357 D-FFOCT patches. Subsequently, from June 22 to August 17, 2018, independent tests (n = 42) were conducted on 10 benign lesions, 29 IDC, 1 DCIS, and 2 rare tumors. The model yielded excellent performance, with an accuracy of 97.62%, sensitivity of 96.88% and specificity of 100%; only one IDC was misclassified. Meanwhile, the acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. In the simulated intraoperative margin evaluation procedure, the time required for our novel workflow (approximately 3 min) was significantly shorter than that required for traditional procedures (approximately 30 min). These findings indicate that the combination of D-FFOCT and deep learning algorithms can streamline intraoperative cancer diagnosis independently of traditional pathology laboratory procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tony完成签到,获得积分10
2秒前
幽若宝宝完成签到,获得积分10
5秒前
vincent完成签到,获得积分20
5秒前
6秒前
二由完成签到 ,获得积分10
7秒前
白米完成签到 ,获得积分10
8秒前
白鸽完成签到 ,获得积分10
9秒前
凌云完成签到,获得积分10
10秒前
飘逸的威发布了新的文献求助10
11秒前
orixero应助jscr采纳,获得10
13秒前
八九完成签到 ,获得积分10
18秒前
车明雪发布了新的文献求助10
19秒前
kanoz完成签到,获得积分10
20秒前
仁爱的戒指完成签到 ,获得积分10
22秒前
22秒前
明芷蝶完成签到,获得积分10
22秒前
25秒前
无私的朝雪完成签到 ,获得积分10
25秒前
粉鳍完成签到 ,获得积分10
26秒前
xiaozhou发布了新的文献求助10
28秒前
昱昱完成签到 ,获得积分10
28秒前
无敌鱼发布了新的文献求助10
28秒前
帅气的沧海完成签到 ,获得积分10
29秒前
Crisp完成签到,获得积分10
30秒前
追梦人完成签到 ,获得积分10
31秒前
Liu Xiaojing完成签到,获得积分10
33秒前
银角大王完成签到,获得积分10
35秒前
xiaozhou完成签到,获得积分10
36秒前
XS123完成签到,获得积分10
36秒前
活力的雁荷完成签到,获得积分10
37秒前
阿湫完成签到,获得积分10
38秒前
清爽的胡萝卜完成签到 ,获得积分10
38秒前
Res_M完成签到 ,获得积分10
39秒前
XinEr完成签到 ,获得积分10
39秒前
39秒前
天天浇水完成签到,获得积分10
41秒前
123完成签到,获得积分10
41秒前
起名字好难起完成签到,获得积分10
42秒前
莎莎完成签到 ,获得积分10
44秒前
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137101
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784523
捐赠科研通 2444109
什么是DOI,文献DOI怎么找? 1299758
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011