电致变色
材料科学
超级电容器
假电容
吸光度
纳米技术
阳极
储能
电容
无定形固体
光电子学
电极
光学
物理化学
有机化学
功率(物理)
化学
物理
量子力学
作者
Yanyan Yang,Fengru Li,Bo Fu,Yingying Song,Huiwen Shi,Xiao‐Yang Yu,Shuping Liu,Xiaoshu Qu
标识
DOI:10.1016/j.ceramint.2024.03.272
摘要
Novel materials with highly synchronized electrochromic (EC) and energy storage properties are needed to simultaneously visualize and quantify the real-time charge state of energy storage devices. Herein, a film was prepared by the Layer-by-Layer assembly of W18O49 nanowires and a Preyssler-type polyoxometalate (POM) [P5W30O110]15− (P5W30). The introduction of amorphous POM decreased the band gap to 2.54 eV, which greatly facilitated the synergy between the EC and charge storage properties. Driven under a low voltage of −0.6 V, this W18O49/P5W30 composite film displayed strong and reversible changes in its optical absorbance in both the visible and near-infrared regions, and it also showed the typical pseudocapacitance behavior with an area capacitance of 34.71 mF cm−2. Moreover, this film was able to simultaneously quantify and visualize its own energy storage state and photothermal conversion in real time by significant color changes (maximum chromaticity difference: 72.44) and high absorbance changes (1.11 at 650 nm and 1.11 at 1200 nm). In addition, a gel EC supercapacitor based on the W18O49/P5W30 film as cathode and NiO film as anode exhibited an absorbance variation up to 0.75 and an area capacitance as high as 4.42 mF cm−2, and it successfully powered a light emitting diode using the stored electrical energy. This work not only broadens the application scope of POM-based EC materials but also provides a feasible design strategy for next-generation smart energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI