Layer-Adapted Implicit Distribution Alignment Networks for Cross-Corpus Speech Emotion Recognition

判别式 正规化(语言学) 人工智能 计算机科学 语音识别 自然语言处理 模式识别(心理学)
作者
Yan Zhao,Yuan Zong,Jincen Wang,Hailun Lian,Cheng Lu,Li Zhao,Wenming Zheng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03992
摘要

In this paper, we propose a new unsupervised domain adaptation (DA) method called layer-adapted implicit distribution alignment networks (LIDAN) to address the challenge of cross-corpus speech emotion recognition (SER). LIDAN extends our previous ICASSP work, deep implicit distribution alignment networks (DIDAN), whose key contribution lies in the introduction of a novel regularization term called implicit distribution alignment (IDA). This term allows DIDAN trained on source (training) speech samples to remain applicable to predicting emotion labels for target (testing) speech samples, regardless of corpus variance in cross-corpus SER. To further enhance this method, we extend IDA to layer-adapted IDA (LIDA), resulting in LIDAN. This layer-adpated extention consists of three modified IDA terms that consider emotion labels at different levels of granularity. These terms are strategically arranged within different fully connected layers in LIDAN, aligning with the increasing emotion-discriminative abilities with respect to the layer depth. This arrangement enables LIDAN to more effectively learn emotion-discriminative and corpus-invariant features for SER across various corpora compared to DIDAN. It is also worthy to mention that unlike most existing methods that rely on estimating statistical moments to describe pre-assumed explicit distributions, both IDA and LIDA take a different approach. They utilize an idea of target sample reconstruction to directly bridge the feature distribution gap without making assumptions about their distribution type. As a result, DIDAN and LIDAN can be viewed as implicit cross-corpus SER methods. To evaluate LIDAN, we conducted extensive cross-corpus SER experiments on EmoDB, eNTERFACE, and CASIA corpora. The experimental results demonstrate that LIDAN surpasses recent state-of-the-art explicit unsupervised DA methods in tackling cross-corpus SER tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
桐桐应助Xiang采纳,获得10
2秒前
2秒前
3秒前
长雁发布了新的文献求助10
3秒前
美好斓发布了新的文献求助10
4秒前
5秒前
情怀应助风华笔墨采纳,获得10
5秒前
淡定从凝发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
华仔应助村民老马采纳,获得10
6秒前
6秒前
汪禹完成签到,获得积分10
6秒前
ZKai完成签到,获得积分20
7秒前
嘿嘿发布了新的文献求助10
7秒前
阿氏之光完成签到,获得积分10
8秒前
8秒前
9秒前
汪禹发布了新的文献求助10
9秒前
9秒前
包子完成签到,获得积分10
9秒前
萌萌小粥完成签到 ,获得积分10
10秒前
帅气善斓应助着急的班采纳,获得10
11秒前
fjkssadjk发布了新的文献求助10
14秒前
14秒前
一号完成签到,获得积分20
15秒前
帅气善斓应助称心奇迹采纳,获得10
15秒前
夜绒枭完成签到 ,获得积分10
15秒前
微笑芯发布了新的文献求助10
16秒前
但愿人长久关注了科研通微信公众号
16秒前
小憨锅发布了新的文献求助10
17秒前
包子发布了新的文献求助10
17秒前
张启凤完成签到,获得积分10
20秒前
天天快乐应助超帅的碱采纳,获得10
21秒前
21秒前
烂漫飞机发布了新的文献求助10
21秒前
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177