Layer-Adapted Implicit Distribution Alignment Networks for Cross-Corpus Speech Emotion Recognition

判别式 正规化(语言学) 人工智能 计算机科学 语音识别 自然语言处理 模式识别(心理学)
作者
Yan Zhao,Yuan Zong,Jincen Wang,Hailun Lian,Cheng Lu,Li Zhao,Wenming Zheng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03992
摘要

In this paper, we propose a new unsupervised domain adaptation (DA) method called layer-adapted implicit distribution alignment networks (LIDAN) to address the challenge of cross-corpus speech emotion recognition (SER). LIDAN extends our previous ICASSP work, deep implicit distribution alignment networks (DIDAN), whose key contribution lies in the introduction of a novel regularization term called implicit distribution alignment (IDA). This term allows DIDAN trained on source (training) speech samples to remain applicable to predicting emotion labels for target (testing) speech samples, regardless of corpus variance in cross-corpus SER. To further enhance this method, we extend IDA to layer-adapted IDA (LIDA), resulting in LIDAN. This layer-adpated extention consists of three modified IDA terms that consider emotion labels at different levels of granularity. These terms are strategically arranged within different fully connected layers in LIDAN, aligning with the increasing emotion-discriminative abilities with respect to the layer depth. This arrangement enables LIDAN to more effectively learn emotion-discriminative and corpus-invariant features for SER across various corpora compared to DIDAN. It is also worthy to mention that unlike most existing methods that rely on estimating statistical moments to describe pre-assumed explicit distributions, both IDA and LIDA take a different approach. They utilize an idea of target sample reconstruction to directly bridge the feature distribution gap without making assumptions about their distribution type. As a result, DIDAN and LIDAN can be viewed as implicit cross-corpus SER methods. To evaluate LIDAN, we conducted extensive cross-corpus SER experiments on EmoDB, eNTERFACE, and CASIA corpora. The experimental results demonstrate that LIDAN surpasses recent state-of-the-art explicit unsupervised DA methods in tackling cross-corpus SER tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tianjiu发布了新的文献求助10
3秒前
3秒前
5秒前
Hmzh完成签到,获得积分10
5秒前
甄不错完成签到,获得积分10
6秒前
Orange应助loverdose采纳,获得10
6秒前
Landau完成签到,获得积分10
6秒前
nmamtf发布了新的文献求助10
6秒前
晨曦完成签到,获得积分10
7秒前
微微发布了新的文献求助10
8秒前
8秒前
bc发布了新的文献求助10
8秒前
俭朴的身影完成签到,获得积分10
9秒前
清脆愫完成签到 ,获得积分10
10秒前
10秒前
agan完成签到,获得积分20
10秒前
小蘑菇应助丰富的梦琪采纳,获得10
12秒前
学位论文发布了新的文献求助10
12秒前
沙脑完成签到 ,获得积分10
13秒前
充电宝应助优雅的雪一采纳,获得10
14秒前
含糊的清完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
大聪明陈发布了新的文献求助10
22秒前
tianjiu发布了新的文献求助10
23秒前
27秒前
一二一发布了新的文献求助10
27秒前
28秒前
大聪明陈完成签到,获得积分10
30秒前
汉堡包应助zouyangmingjia采纳,获得10
30秒前
yyy发布了新的文献求助10
30秒前
31秒前
Bao发布了新的文献求助10
32秒前
科研通AI2S应助Misaki采纳,获得10
32秒前
李爱国应助暴躁的信封采纳,获得10
37秒前
MinQi完成签到,获得积分10
37秒前
舒服的元瑶完成签到 ,获得积分10
38秒前
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354349
求助须知:如何正确求助?哪些是违规求助? 2978709
关于积分的说明 8687170
捐赠科研通 2660335
什么是DOI,文献DOI怎么找? 1456596
科研通“疑难数据库(出版商)”最低求助积分说明 674417
邀请新用户注册赠送积分活动 665247