Layer-Adapted Implicit Distribution Alignment Networks for Cross-Corpus Speech Emotion Recognition

判别式 正规化(语言学) 人工智能 计算机科学 语音识别 自然语言处理 模式识别(心理学)
作者
Yan Zhao,Yuan Zong,Jincen Wang,Hailun Lian,Cheng Lu,Li Zhao,Wenming Zheng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03992
摘要

In this paper, we propose a new unsupervised domain adaptation (DA) method called layer-adapted implicit distribution alignment networks (LIDAN) to address the challenge of cross-corpus speech emotion recognition (SER). LIDAN extends our previous ICASSP work, deep implicit distribution alignment networks (DIDAN), whose key contribution lies in the introduction of a novel regularization term called implicit distribution alignment (IDA). This term allows DIDAN trained on source (training) speech samples to remain applicable to predicting emotion labels for target (testing) speech samples, regardless of corpus variance in cross-corpus SER. To further enhance this method, we extend IDA to layer-adapted IDA (LIDA), resulting in LIDAN. This layer-adpated extention consists of three modified IDA terms that consider emotion labels at different levels of granularity. These terms are strategically arranged within different fully connected layers in LIDAN, aligning with the increasing emotion-discriminative abilities with respect to the layer depth. This arrangement enables LIDAN to more effectively learn emotion-discriminative and corpus-invariant features for SER across various corpora compared to DIDAN. It is also worthy to mention that unlike most existing methods that rely on estimating statistical moments to describe pre-assumed explicit distributions, both IDA and LIDA take a different approach. They utilize an idea of target sample reconstruction to directly bridge the feature distribution gap without making assumptions about their distribution type. As a result, DIDAN and LIDAN can be viewed as implicit cross-corpus SER methods. To evaluate LIDAN, we conducted extensive cross-corpus SER experiments on EmoDB, eNTERFACE, and CASIA corpora. The experimental results demonstrate that LIDAN surpasses recent state-of-the-art explicit unsupervised DA methods in tackling cross-corpus SER tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Smiley完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
3秒前
xx发布了新的文献求助10
3秒前
3秒前
5秒前
李正纲发布了新的文献求助10
5秒前
gyf应助jackten采纳,获得10
6秒前
田様应助海绵宝宝采纳,获得10
6秒前
6秒前
6秒前
慧海拾穗发布了新的文献求助10
6秒前
7秒前
熊猫发布了新的文献求助10
7秒前
8秒前
木头人呐完成签到 ,获得积分10
8秒前
G秋发布了新的文献求助10
9秒前
啦啦发布了新的文献求助10
9秒前
11秒前
王卫完成签到,获得积分10
11秒前
Karry完成签到 ,获得积分10
12秒前
12秒前
星海种花完成签到 ,获得积分10
12秒前
xx完成签到,获得积分10
13秒前
verymiao完成签到 ,获得积分10
13秒前
13秒前
上官若男应助合适猫咪采纳,获得10
14秒前
伶俐飞风发布了新的文献求助20
14秒前
yangmengyuan完成签到 ,获得积分10
15秒前
15秒前
阿月完成签到,获得积分10
15秒前
Ning_完成签到 ,获得积分10
15秒前
wangyuchen发布了新的文献求助10
15秒前
15秒前
15秒前
汉堡包应助slowstar采纳,获得10
16秒前
忧虑的如风应助李正纲采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911732
求助须知:如何正确求助?哪些是违规求助? 4187158
关于积分的说明 13003078
捐赠科研通 3955101
什么是DOI,文献DOI怎么找? 2168564
邀请新用户注册赠送积分活动 1187030
关于科研通互助平台的介绍 1094282