亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Layer-Adapted Implicit Distribution Alignment Networks for Cross-Corpus Speech Emotion Recognition

判别式 正规化(语言学) 人工智能 计算机科学 语音识别 自然语言处理 模式识别(心理学)
作者
Yan Zhao,Yuan Zong,Jincen Wang,Hailun Lian,Cheng Lu,Li Zhao,Wenming Zheng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03992
摘要

In this paper, we propose a new unsupervised domain adaptation (DA) method called layer-adapted implicit distribution alignment networks (LIDAN) to address the challenge of cross-corpus speech emotion recognition (SER). LIDAN extends our previous ICASSP work, deep implicit distribution alignment networks (DIDAN), whose key contribution lies in the introduction of a novel regularization term called implicit distribution alignment (IDA). This term allows DIDAN trained on source (training) speech samples to remain applicable to predicting emotion labels for target (testing) speech samples, regardless of corpus variance in cross-corpus SER. To further enhance this method, we extend IDA to layer-adapted IDA (LIDA), resulting in LIDAN. This layer-adpated extention consists of three modified IDA terms that consider emotion labels at different levels of granularity. These terms are strategically arranged within different fully connected layers in LIDAN, aligning with the increasing emotion-discriminative abilities with respect to the layer depth. This arrangement enables LIDAN to more effectively learn emotion-discriminative and corpus-invariant features for SER across various corpora compared to DIDAN. It is also worthy to mention that unlike most existing methods that rely on estimating statistical moments to describe pre-assumed explicit distributions, both IDA and LIDA take a different approach. They utilize an idea of target sample reconstruction to directly bridge the feature distribution gap without making assumptions about their distribution type. As a result, DIDAN and LIDAN can be viewed as implicit cross-corpus SER methods. To evaluate LIDAN, we conducted extensive cross-corpus SER experiments on EmoDB, eNTERFACE, and CASIA corpora. The experimental results demonstrate that LIDAN surpasses recent state-of-the-art explicit unsupervised DA methods in tackling cross-corpus SER tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路不愁完成签到 ,获得积分10
4秒前
wang完成签到 ,获得积分10
10秒前
13秒前
19秒前
26秒前
ding应助沉静的万天采纳,获得10
29秒前
29秒前
30秒前
zrrr完成签到 ,获得积分10
30秒前
30秒前
科研通AI6.1应助Crw__采纳,获得10
37秒前
simon完成签到 ,获得积分10
41秒前
流川封完成签到,获得积分10
42秒前
烂漫靖柏完成签到 ,获得积分10
46秒前
47秒前
雪霁完成签到,获得积分10
48秒前
Crw__发布了新的文献求助10
56秒前
汪酱酱完成签到 ,获得积分10
57秒前
星辰大海应助坚强的唇膏采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
风信子完成签到 ,获得积分10
1分钟前
啵啵鱼发布了新的文献求助10
1分钟前
qunna完成签到,获得积分10
1分钟前
1分钟前
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
范丞丞完成签到 ,获得积分10
1分钟前
三点前我必睡完成签到 ,获得积分10
1分钟前
Rui发布了新的文献求助10
1分钟前
1分钟前
Akim应助等待的香魔采纳,获得30
1分钟前
啵啵鱼完成签到,获得积分20
1分钟前
昵称完成签到,获得积分0
1分钟前
整齐晓筠完成签到 ,获得积分10
1分钟前
1分钟前
Lisheng000完成签到 ,获得积分10
1分钟前
OCDer发布了新的文献求助10
1分钟前
1分钟前
1分钟前
西蓝花战士完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788109
求助须知:如何正确求助?哪些是违规求助? 5704481
关于积分的说明 15473229
捐赠科研通 4916268
什么是DOI,文献DOI怎么找? 2646252
邀请新用户注册赠送积分活动 1593896
关于科研通互助平台的介绍 1548301