Layer-Adapted Implicit Distribution Alignment Networks for Cross-Corpus Speech Emotion Recognition

判别式 正规化(语言学) 人工智能 计算机科学 语音识别 自然语言处理 模式识别(心理学)
作者
Yan Zhao,Yuan Zong,Jincen Wang,Hailun Lian,Cheng Lu,Li Zhao,Wenming Zheng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.03992
摘要

In this paper, we propose a new unsupervised domain adaptation (DA) method called layer-adapted implicit distribution alignment networks (LIDAN) to address the challenge of cross-corpus speech emotion recognition (SER). LIDAN extends our previous ICASSP work, deep implicit distribution alignment networks (DIDAN), whose key contribution lies in the introduction of a novel regularization term called implicit distribution alignment (IDA). This term allows DIDAN trained on source (training) speech samples to remain applicable to predicting emotion labels for target (testing) speech samples, regardless of corpus variance in cross-corpus SER. To further enhance this method, we extend IDA to layer-adapted IDA (LIDA), resulting in LIDAN. This layer-adpated extention consists of three modified IDA terms that consider emotion labels at different levels of granularity. These terms are strategically arranged within different fully connected layers in LIDAN, aligning with the increasing emotion-discriminative abilities with respect to the layer depth. This arrangement enables LIDAN to more effectively learn emotion-discriminative and corpus-invariant features for SER across various corpora compared to DIDAN. It is also worthy to mention that unlike most existing methods that rely on estimating statistical moments to describe pre-assumed explicit distributions, both IDA and LIDA take a different approach. They utilize an idea of target sample reconstruction to directly bridge the feature distribution gap without making assumptions about their distribution type. As a result, DIDAN and LIDAN can be viewed as implicit cross-corpus SER methods. To evaluate LIDAN, we conducted extensive cross-corpus SER experiments on EmoDB, eNTERFACE, and CASIA corpora. The experimental results demonstrate that LIDAN surpasses recent state-of-the-art explicit unsupervised DA methods in tackling cross-corpus SER tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈苗完成签到 ,获得积分20
1秒前
Prime完成签到 ,获得积分10
2秒前
2秒前
陈苗关注了科研通微信公众号
6秒前
中世纪托尼完成签到 ,获得积分10
6秒前
言草西完成签到,获得积分10
8秒前
Nienie发布了新的文献求助10
8秒前
汉堡包应助沙糖桔采纳,获得10
10秒前
SCINEXUS应助S2639采纳,获得10
10秒前
SCINEXUS应助S2639采纳,获得50
10秒前
大个应助闪闪如松采纳,获得10
13秒前
13秒前
13秒前
Airbus完成签到 ,获得积分10
14秒前
奥特超曼应助luchong采纳,获得10
15秒前
陈曦发布了新的文献求助10
16秒前
16秒前
17秒前
thth完成签到,获得积分10
17秒前
18秒前
顾涵山发布了新的文献求助20
19秒前
dyce发布了新的文献求助10
20秒前
沙糖桔完成签到,获得积分10
21秒前
Lost完成签到,获得积分10
22秒前
在水一方应助biubiudididi采纳,获得10
23秒前
123发布了新的文献求助10
23秒前
一晃儿完成签到,获得积分10
23秒前
23秒前
Lucas应助Nienie采纳,获得10
24秒前
北夏发布了新的文献求助10
24秒前
lzx发布了新的文献求助10
25秒前
25秒前
Hina发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
乂贰ZERO叁发布了新的文献求助10
27秒前
美丽星期五完成签到,获得积分10
29秒前
阿九发布了新的文献求助10
29秒前
科目三应助chase采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176