Combination of hyperspectral and LiDAR for aboveground biomass estimation using machine learning

高光谱成像 激光雷达 均方误差 随机森林 遥感 环境科学 植被(病理学) 生物量(生态学) 决定系数 人工神经网络 计算机科学 机器学习 数学 统计 地理 生态学 生物 医学 病理
作者
Nik Ahmad Faris Nik Effendi,Nurul Ain Mohd Zaki,Zulkiflee Abd Latif,Mohd Faisal Abdul Khanan
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (6): 1750-1771 被引量:1
标识
DOI:10.1111/tgis.13214
摘要

Abstract The increase in greenhouse gases in the atmosphere is due to carbon dioxide (CO 2 ), which has affected climate change. Therefore, the forest plays an essential role in carbon storage which absorbs the CO 2 and releases oxygen (O 2 ) to stabilize the earth's ecosystem. This research aims to estimate aboveground biomass (AGB) using a combination of airborne hyperspectral and LiDAR data with field observation in a tropical forest. The objective of this study is to test the ability of vegetation indices and topographic features derived from hyperspectral and LiDAR data using machine learning for AGB estimation and to identify the best machine learning algorithms for estimating AGB in tropical forest. In this research, artificial neural network (ANN) and random forest (RF) algorithm were used to predict the AGB using different models with different combinations of variables. During model selection, the best model fit was selected by calculating statistical parameters such as the residual of the coefficient of determination ( R 2 ) and root mean square error (RMSE). Based on the statistical indicators, the most suitable model is Model 4 using anRF algorithm with mtry = p, and a combination of field observation, LiDAR, hyperspectral, vegetation indices (VIs), and topography. This model produced R 2 = 0.997 and RMSE = 30.653 kg/tree. Therefore, using a combination of field observation and remote sensing data with machine learning techniques is reliable in forest management to estimate AGB in tropical forest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ygl0217完成签到,获得积分10
1秒前
WenHT发布了新的文献求助10
1秒前
1秒前
嗖嗖发布了新的文献求助30
1秒前
1秒前
幸福大白发布了新的文献求助10
1秒前
1秒前
1秒前
wkz发布了新的文献求助20
1秒前
Hello应助背后城采纳,获得10
2秒前
qqwrv发布了新的文献求助10
2秒前
烟火岸上发布了新的文献求助10
2秒前
3秒前
老乡开下门吧完成签到,获得积分10
3秒前
wanci应助苗条世德采纳,获得10
4秒前
蜘蛛道理完成签到 ,获得积分10
4秒前
静好完成签到,获得积分20
5秒前
炙热的子默完成签到,获得积分10
6秒前
wang0626完成签到 ,获得积分10
6秒前
lll6xz发布了新的文献求助10
6秒前
aldehyde应助轻松思枫采纳,获得10
6秒前
留胡子的紫槐完成签到,获得积分10
6秒前
7秒前
winnie完成签到,获得积分10
7秒前
lcxszsd完成签到 ,获得积分10
7秒前
小西完成签到,获得积分10
7秒前
李爱国应助电闪采纳,获得10
7秒前
清爽的亦瑶完成签到 ,获得积分10
8秒前
勤恳的雨文完成签到,获得积分10
8秒前
stars发布了新的文献求助10
9秒前
派大星发布了新的文献求助10
9秒前
orixero应助进击的斑马鱼采纳,获得10
9秒前
WHY完成签到 ,获得积分10
9秒前
zzz完成签到 ,获得积分10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
终醒完成签到,获得积分10
11秒前
陈文娟完成签到,获得积分10
11秒前
134完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128