高光谱成像
激光雷达
均方误差
随机森林
遥感
环境科学
植被(病理学)
生物量(生态学)
决定系数
人工神经网络
计算机科学
机器学习
数学
统计
地理
生态学
生物
医学
病理
作者
Nik Ahmad Faris Nik Effendi,Nurul Ain Mohd Zaki,Zulkiflee Abd Latif,Mohd Faisal Abdul Khanan
摘要
Abstract The increase in greenhouse gases in the atmosphere is due to carbon dioxide (CO 2 ), which has affected climate change. Therefore, the forest plays an essential role in carbon storage which absorbs the CO 2 and releases oxygen (O 2 ) to stabilize the earth's ecosystem. This research aims to estimate aboveground biomass (AGB) using a combination of airborne hyperspectral and LiDAR data with field observation in a tropical forest. The objective of this study is to test the ability of vegetation indices and topographic features derived from hyperspectral and LiDAR data using machine learning for AGB estimation and to identify the best machine learning algorithms for estimating AGB in tropical forest. In this research, artificial neural network (ANN) and random forest (RF) algorithm were used to predict the AGB using different models with different combinations of variables. During model selection, the best model fit was selected by calculating statistical parameters such as the residual of the coefficient of determination ( R 2 ) and root mean square error (RMSE). Based on the statistical indicators, the most suitable model is Model 4 using anRF algorithm with mtry = p, and a combination of field observation, LiDAR, hyperspectral, vegetation indices (VIs), and topography. This model produced R 2 = 0.997 and RMSE = 30.653 kg/tree. Therefore, using a combination of field observation and remote sensing data with machine learning techniques is reliable in forest management to estimate AGB in tropical forest.
科研通智能强力驱动
Strongly Powered by AbleSci AI