Molecular Ordering Manipulation in Fused Oligomeric Mixed Conductors for High-Performance n-Type Organic Electrochemical Transistors

材料科学 晶体管 电化学 导电体 纳米技术 分子电子学 有机半导体 光电子学 分子 电极 化学 电压 有机化学 电气工程 物理化学 复合材料 工程类
作者
Jiayao Duan,Mingfei Xiao,Genming Zhu,Junxin Chen,Huiqing Hou,Sergio Gámez‐Valenzuela,Szymon J. Zelewski,Linjie Dai,Xudong Tao,Chong Ran,Nathan Jay,Yuze Lin,Xugang Guo,Wan Yue
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (41): 28070-28080
标识
DOI:10.1021/acsnano.4c07219
摘要

Advanced n-type organic electrochemical transistors (OECTs) play an important part in bioelectronics, facilitating the booming of complementary circuits-based biosensors. This necessitates the utilization of both n-type and p-type organic mixed ionic–electronic conductors (OMIECs) exhibiting a balanced performance. However, the observed subpar electron charge transport ability in most n-type OMIECs presents a significant challenge to the overall functionality of the circuits. In response to this issue, we achieve high-performance OMIECs by leveraging a series of fused electron-deficient monodisperse oligomers with mixed alkyl and glycol chains. Through molecular ordering manipulation by optimizing of their alkyl side chains, we attained a record-breaking OECT electron mobility of 0.62 cm2/(V s) and μC* of 63.2 F/(cm V s) for bgTNR-3DT with symmetrical alkyl chains. Notably, the bgTNR-3DT film also exhibits the highest structural ordering, smallest energetic disorder, and the lowest trap density among the series, potentially explaining its ideal charge transport property. Additionally, we demonstrate an organic inverter incorporating bgTNR-3DT OECTs with a gain above 30, showcasing the material's potential for constructing organic circuits. Our findings underscore the indispensable role of alkyl chain optimization in the evolution of prospective high performance OMIECs for constructing advanced organic complementary circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葱饼完成签到 ,获得积分10
1秒前
Anquan完成签到,获得积分10
1秒前
yudandan@CJLU发布了新的文献求助10
2秒前
鱼儿123完成签到,获得积分10
2秒前
端庄的访枫完成签到 ,获得积分10
3秒前
车秋寒发布了新的文献求助10
3秒前
3秒前
完美秋烟完成签到,获得积分10
4秒前
5秒前
7秒前
lee1992完成签到,获得积分10
7秒前
nextconnie发布了新的文献求助10
8秒前
nextconnie发布了新的文献求助10
8秒前
nextconnie发布了新的文献求助10
8秒前
CO2发布了新的文献求助10
9秒前
uniquedl完成签到 ,获得积分10
9秒前
nextconnie发布了新的文献求助10
9秒前
子伊完成签到 ,获得积分10
10秒前
13秒前
13秒前
13秒前
今后应助憨鬼憨切采纳,获得10
15秒前
15秒前
16秒前
greenPASS666完成签到,获得积分10
18秒前
KYN发布了新的文献求助10
18秒前
19秒前
meng发布了新的文献求助10
19秒前
20秒前
Leon发布了新的文献求助10
20秒前
axunQAQ发布了新的文献求助10
20秒前
111发布了新的文献求助10
21秒前
22秒前
cc发布了新的文献求助10
25秒前
程勋航完成签到,获得积分10
25秒前
HH完成签到,获得积分10
25秒前
陆千万完成签到,获得积分10
27秒前
我是125应助老疯智采纳,获得10
27秒前
LEE发布了新的文献求助10
27秒前
Leon完成签到,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849