AI Prediction for Post-Lower Blepharoplasty Age Reduction

医学 眼睑成形术 还原(数学) 人工智能 外科 眼睑 几何学 数学 计算机科学
作者
T. J. Chiou,Cheng-I Yen,Yen-Chang Hsiao,Hung-Chang Chen
出处
期刊:Aesthetic Surgery Journal [Oxford University Press]
卷期号:44 (12): NP922-NP930
标识
DOI:10.1093/asj/sjae182
摘要

Abstract Background Aesthetic standards vary and are subjective; artificial intelligence (AI), which is currently seeing a boom in interest, has the potential to provide objective assessment. Objectives The aim of this study was to provide a relatively objective assessment of the aesthetic outcomes of lower blepharoplasty–related surgeries, thereby enhancing the decision-making process and understanding of the surgical results. Methods This study included 150 patients who had undergone lower blepharoplasty–related surgeries. Analysis was performed with FaceAge software, created by the authors’ research team, which included 4 publicly available age estimation convolution neural network (CNN) models: Amazon Rekognition (Seattle, WA), Microsoft Azure Face (Redmond, WA), Face++ Detect (Beijing, China), and Inferdo face detection (New York, NY). This application was used to compare the subjects’ real age and their age as estimated by the 4 CNNs. In addition, this application was used to estimate patient age based on preoperative and postoperative images of all 150 patients and to evaluate the effect of lower blepharoplasty. Results In terms of accuracy in age prediction, all CNN models exhibited a certain degree of accuracy. For all 150 patients undergoing lower blepharoplasty–related surgeries, these surgeries resulted in about 2 years of rejuvenation with a statistically significant difference; for the sex difference, men had more age reduction than women also with a statistically significant difference; quadrilateral blepharoplasty showed the most significant antiaging effect. Conclusions By using deep-learning models, lower blepharoplasty–related surgeries actually had an effect on perceived age reduction. Deep learning models have the potential to provide quantitative evidence for the rejuvenating effects of blepharoplasty and other cosmetic surgeries.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
bb完成签到,获得积分10
6秒前
7秒前
顾矜应助Joshua采纳,获得10
9秒前
王平宇完成签到,获得积分20
9秒前
10秒前
10秒前
小吕完成签到,获得积分10
11秒前
12秒前
妮妮完成签到,获得积分10
12秒前
yyyyyz发布了新的文献求助10
14秒前
妮妮发布了新的文献求助10
16秒前
汉堡包应助pengzh采纳,获得10
18秒前
18秒前
我要做科研狗完成签到,获得积分10
22秒前
不如是完成签到,获得积分10
23秒前
欢呼傀斗完成签到,获得积分10
23秒前
上官若男应助妮妮采纳,获得10
25秒前
传奇3应助王平宇采纳,获得10
27秒前
27秒前
大模型应助路鸣泽采纳,获得10
29秒前
CodeCraft应助Lllll采纳,获得10
33秒前
33秒前
对照完成签到 ,获得积分10
37秒前
不配.应助我要做科研狗采纳,获得10
41秒前
41秒前
42秒前
hxx完成签到,获得积分10
42秒前
Lllll发布了新的文献求助10
44秒前
44秒前
李爱国应助yyyyyz采纳,获得10
47秒前
路鸣泽发布了新的文献求助10
49秒前
51秒前
52秒前
海孩子发布了新的文献求助10
56秒前
佳佳爱学习完成签到,获得积分10
57秒前
win完成签到 ,获得积分10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383339
求助须知:如何正确求助?哪些是违规求助? 2997625
关于积分的说明 8775639
捐赠科研通 2683173
什么是DOI,文献DOI怎么找? 1469544
科研通“疑难数据库(出版商)”最低求助积分说明 679448
邀请新用户注册赠送积分活动 671699