An adaptive spatiotemporal filter for ultrasound localization microscopy based on density canopy clustering

奇异值分解 聚类分析 成像体模 模式识别(心理学) 滤波器(信号处理) 信号(编程语言) 自适应滤波器 计算机科学 生物系统 人工智能 计算机视觉 光学 算法 物理 生物 程序设计语言
作者
Qiang Yu,Wenyue Huang,Wenjie Liang,Rong Liu,Xuan Han,Yue Pan,Ningyuan Wang,Yanyan Yu,Zhiqiang Zhang,Lei Sun,Weibao Qiu
出处
期刊:Ultrasonics [Elsevier BV]
卷期号:144: 107446-107446
标识
DOI:10.1016/j.ultras.2024.107446
摘要

Ultrasound Localization Microscopy (ULM) facilitates structural and hemodynamic imaging of microvessels with a resolution of tens of micrometers. In ULM, the extraction of effective microbubble signals is crucial for image quality. Singular Value Decomposition (SVD) is currently the most prevalent method for microbubble signal extraction in ULM. Most existing ULM studies employ a fixed SVD filter threshold using empirical values which will lead to imaging quality degradation due to the insufficient separation of blood signals. In this study, we propose an adaptive and non-threshold SVD filter based on canopy-density clustering, termed DCC-SVD. This filter automatically classifies the components of the SVD based on the density of their spatiotemporal features, eliminating the need for parameter selection. In in vitro tube phantom, DCC-SVD demonstrated its ability to adaptive separation of blood and bubble signal at varying microbubble concentrations and flow rates. We compared the proposed DCC-SVD method with the Block-match 3D (BM3D) filter and a classical adaptive method called spatial similarity matrix (SSM), using concentration-variable in vivo rat brain data, as well as open-source rat kidney and mouse tumor datasets. The proposed DCC-SVD improved the global spatial resolution by approximately 4 μm from 30.39 μm to 26.02 μm. It also captured vessel structure absent in images obtained by other methods and yielded a smoother vessel intensity profile, making it a promising spatiotemporal filter for ULM imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复方蛋酥卷完成签到,获得积分10
刚刚
所所应助moonlight采纳,获得10
1秒前
1秒前
宁静致远完成签到,获得积分10
1秒前
3秒前
于思枫完成签到,获得积分10
4秒前
希望天下0贩的0应助kyJYbs采纳,获得10
5秒前
5秒前
一颗苹果发布了新的文献求助10
6秒前
6秒前
打打应助皮崇知采纳,获得10
6秒前
阿巴发布了新的文献求助10
7秒前
9秒前
1751587229发布了新的文献求助10
9秒前
Kyone完成签到,获得积分10
9秒前
9秒前
解语花应助机电虎采纳,获得30
10秒前
10秒前
10秒前
11秒前
13秒前
mawenyu发布了新的文献求助10
13秒前
14秒前
moonlight发布了新的文献求助10
14秒前
贺呵呵发布了新的文献求助10
14秒前
zx发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
尊敬惜儿完成签到,获得积分10
19秒前
张小愚发布了新的文献求助10
19秒前
小居居发布了新的文献求助10
20秒前
21秒前
21秒前
祺Q发布了新的文献求助10
22秒前
朴实寻真完成签到,获得积分10
23秒前
情怀应助zx采纳,获得10
24秒前
肥蛇外传完成签到,获得积分10
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824