Interpretable Dynamic Directed Graph Convolutional Network for Multi-Relational Prediction of Missense Mutation and Drug Response

错义突变 计算机科学 图形 突变 人工智能 计算生物学 理论计算机科学 遗传学 生物 基因
作者
Qian Gao,Tao Xu,Xiaodi Li,W J Gao,Haoyuan Shi,Youhua Zhang,Jie Chen,Zhenyu Yue
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:4
标识
DOI:10.1109/jbhi.2024.3483316
摘要

Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These complex relationships highlight the need for advanced analytical approaches in oncology. Due to their powerful ability to handle heterogeneous data, graph convolutional networks (GCNs) represent a promising approach for predicting drug responses. However, simple bipartite graphs cannot accurately capture the complex relationships involved in missense mutation and drug response. Furthermore, Deep learning models for drug response are often considered "black boxes", and their interpretability remains a widely discussed issue. To address these challenges, we propose an Interpretable Dynamic Directed Graph Convolutional Network (IDDGCN) framework, which incorporates four key features: (1) the use of directed graphs to differentiate between sensitivity and resistance relationships, (2) the dynamic updating of node weights based on node-specific interactions, (3) the exploration of associations between different mutations within the same gene and drug response, and (4) the enhancement of interpretability models through the integration of a weighted mechanism that accounts for the biological significance, alongside a ground truth construction method to evaluate prediction transparency. The experimental results demonstrate that IDDGCN outperforms existing state-of-the-art models, exhibiting excellent predictive power. Both qualitative and quantitative evaluations of its interpretability further highlight its ability to explain predictions, offering a fresh perspective for precision oncology and targeted drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
冷艳的冬寒完成签到,获得积分10
1秒前
高中发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
Lau发布了新的文献求助10
2秒前
2秒前
蟹老板的crab完成签到 ,获得积分10
2秒前
3秒前
ymh2884发布了新的文献求助10
3秒前
猪猪完成签到,获得积分10
3秒前
MetalHead完成签到,获得积分10
3秒前
桐桐应助duyuqing采纳,获得10
3秒前
3秒前
科研通AI6应助guard采纳,获得10
3秒前
JamesPei应助dw采纳,获得10
3秒前
甜甜玫瑰发布了新的文献求助10
5秒前
5秒前
5秒前
韋晴发布了新的文献求助10
5秒前
6秒前
6秒前
初心发布了新的文献求助30
6秒前
NexusExplorer应助郭干成采纳,获得10
7秒前
占囧完成签到,获得积分10
7秒前
7秒前
噜噜噜发布了新的文献求助10
7秒前
8秒前
8秒前
Lynn发布了新的文献求助10
9秒前
9秒前
Hello应助YLC采纳,获得10
9秒前
KJ发布了新的文献求助10
9秒前
qianwang应助hjx采纳,获得10
9秒前
DONG发布了新的文献求助10
10秒前
每㐬山风发布了新的文献求助10
10秒前
11秒前
碧蓝雁风完成签到 ,获得积分10
11秒前
君悦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508548
求助须知:如何正确求助?哪些是违规求助? 4603695
关于积分的说明 14487234
捐赠科研通 4538072
什么是DOI,文献DOI怎么找? 2486805
邀请新用户注册赠送积分活动 1469382
关于科研通互助平台的介绍 1441636