Interpretable Dynamic Directed Graph Convolutional Network for Multi-Relational Prediction of Missense Mutation and Drug Response

错义突变 计算机科学 图形 突变 人工智能 计算生物学 理论计算机科学 遗传学 生物 基因
作者
Qian Gao,Tao Xu,Xiaodi Li,W J Gao,Haoyuan Shi,Youhua Zhang,Jie Chen,Zhenyu Yue
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:3
标识
DOI:10.1109/jbhi.2024.3483316
摘要

Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These complex relationships highlight the need for advanced analytical approaches in oncology. Due to their powerful ability to handle heterogeneous data, graph convolutional networks (GCNs) represent a promising approach for predicting drug responses. However, simple bipartite graphs cannot accurately capture the complex relationships involved in missense mutation and drug response. Furthermore, Deep learning models for drug response are often considered "black boxes", and their interpretability remains a widely discussed issue. To address these challenges, we propose an Interpretable Dynamic Directed Graph Convolutional Network (IDDGCN) framework, which incorporates four key features: (1) the use of directed graphs to differentiate between sensitivity and resistance relationships, (2) the dynamic updating of node weights based on node-specific interactions, (3) the exploration of associations between different mutations within the same gene and drug response, and (4) the enhancement of interpretability models through the integration of a weighted mechanism that accounts for the biological significance, alongside a ground truth construction method to evaluate prediction transparency. The experimental results demonstrate that IDDGCN outperforms existing state-of-the-art models, exhibiting excellent predictive power. Both qualitative and quantitative evaluations of its interpretability further highlight its ability to explain predictions, offering a fresh perspective for precision oncology and targeted drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
YAN完成签到,获得积分10
3秒前
bingxinl应助小魏采纳,获得10
3秒前
3秒前
酷酷阑香发布了新的文献求助10
4秒前
完美世界应助哲学家采纳,获得10
4秒前
乘风破浪完成签到 ,获得积分0
5秒前
6秒前
伶俐的问晴关注了科研通微信公众号
6秒前
情怀应助考马斯靓女采纳,获得10
6秒前
6秒前
我是老大应助一只大老蹬采纳,获得10
6秒前
开朗的觅柔完成签到,获得积分10
6秒前
粗犷的灵松完成签到 ,获得积分10
7秒前
7秒前
丘比特应助雨晴采纳,获得30
7秒前
pw发布了新的文献求助30
8秒前
牛牛牛发布了新的文献求助10
8秒前
8秒前
Sublimation完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
三番又六次完成签到,获得积分10
8秒前
酷酷阑香完成签到,获得积分10
9秒前
A拉拉拉完成签到,获得积分10
9秒前
爱上学的小金完成签到 ,获得积分10
9秒前
所所应助imchenyin采纳,获得10
10秒前
pkaq完成签到,获得积分10
10秒前
SYLH应助傅宛白采纳,获得10
10秒前
暴富的我发布了新的文献求助10
10秒前
壮观的夏山完成签到,获得积分10
11秒前
SciGPT应助俊逸飞雪采纳,获得10
11秒前
俏皮连虎完成签到,获得积分10
12秒前
寻水的鱼完成签到,获得积分10
12秒前
yaosichao完成签到,获得积分10
12秒前
彭于彦祖应助要减肥筝采纳,获得30
12秒前
12秒前
yflin应助山东及时雨采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023050
求助须知:如何正确求助?哪些是违规求助? 3563182
关于积分的说明 11341463
捐赠科研通 3294761
什么是DOI,文献DOI怎么找? 1814755
邀请新用户注册赠送积分活动 889456
科研通“疑难数据库(出版商)”最低求助积分说明 812930