Interpretable Dynamic Directed Graph Convolutional Network for Multi-Relational Prediction of Missense Mutation and Drug Response

错义突变 计算机科学 图形 突变 人工智能 计算生物学 理论计算机科学 遗传学 生物 基因
作者
Qian Gao,Tao Xu,Xiaodi Li,W J Gao,Haoyuan Shi,Youhua Zhang,Jie Chen,Zhenyu Yue
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/jbhi.2024.3483316
摘要

Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These complex relationships highlight the need for advanced analytical approaches in oncology. Due to their powerful ability to handle heterogeneous data, graph convolutional networks (GCNs) represent a promising approach for predicting drug responses. However, simple bipartite graphs cannot accurately capture the complex relationships involved in missense mutation and drug response. Furthermore, Deep learning models for drug response are often considered "black boxes", and their interpretability remains a widely discussed issue. To address these challenges, we propose an Interpretable Dynamic Directed Graph Convolutional Network (IDDGCN) framework, which incorporates four key features: (1) the use of directed graphs to differentiate between sensitivity and resistance relationships, (2) the dynamic updating of node weights based on node-specific interactions, (3) the exploration of associations between different mutations within the same gene and drug response, and (4) the enhancement of interpretability models through the integration of a weighted mechanism that accounts for the biological significance, alongside a ground truth construction method to evaluate prediction transparency. The experimental results demonstrate that IDDGCN outperforms existing state-of-the-art models, exhibiting excellent predictive power. Both qualitative and quantitative evaluations of its interpretability further highlight its ability to explain predictions, offering a fresh perspective for precision oncology and targeted drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助wwwwwnnnnn采纳,获得10
2秒前
2秒前
xiaoxixixier完成签到 ,获得积分10
3秒前
jjjjjj完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
千百度发布了新的文献求助10
6秒前
6秒前
tt耶发布了新的文献求助10
7秒前
开朗的翠彤完成签到,获得积分10
7秒前
8秒前
清秀成威发布了新的文献求助30
8秒前
FR完成签到,获得积分10
8秒前
8秒前
8秒前
fixit发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助zxping采纳,获得10
10秒前
10秒前
芝翎给芝翎的求助进行了留言
10秒前
MY999完成签到,获得积分10
10秒前
打打应助很菜的研究生采纳,获得10
11秒前
Toby完成签到 ,获得积分10
11秒前
11秒前
CQ发布了新的文献求助10
11秒前
抹颜发布了新的文献求助10
11秒前
科研牛马发布了新的文献求助10
11秒前
12秒前
JINNA发布了新的文献求助10
14秒前
bobo发布了新的文献求助10
14秒前
qifunongsuo1213完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
Jasper应助CQ采纳,获得10
17秒前
18秒前
泡泡发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155702
求助须知:如何正确求助?哪些是违规求助? 2806955
关于积分的说明 7871128
捐赠科研通 2465170
什么是DOI,文献DOI怎么找? 1312168
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892