亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable Dynamic Directed Graph Convolutional Network for Multi-Relational Prediction of Missense Mutation and Drug Response

错义突变 计算机科学 图形 突变 人工智能 计算生物学 理论计算机科学 遗传学 生物 基因
作者
Qian Gao,Tao Xu,Xiaodi Li,W J Gao,Haoyuan Shi,Youhua Zhang,Jie Chen,Zhenyu Yue
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (2): 1514-1524 被引量:7
标识
DOI:10.1109/jbhi.2024.3483316
摘要

Tumor heterogeneity presents a significant challenge in predicting drug responses, especially as missense mutations within the same gene can lead to varied outcomes such as drug resistance, enhanced sensitivity, or therapeutic ineffectiveness. These complex relationships highlight the need for advanced analytical approaches in oncology. Due to their powerful ability to handle heterogeneous data, graph convolutional networks (GCNs) represent a promising approach for predicting drug responses. However, simple bipartite graphs cannot accurately capture the complex relationships involved in missense mutation and drug response. Furthermore, Deep learning models for drug response are often considered "black boxes", and their interpretability remains a widely discussed issue. To address these challenges, we propose an Interpretable Dynamic Directed Graph Convolutional Network (IDDGCN) framework, which incorporates four key features: 1) the use of directed graphs to differentiate between sensitivity and resistance relationships, 2) the dynamic updating of node weights based on node-specific interactions, 3) the exploration of associations between different mutations within the same gene and drug response, and 4) the enhancement of interpretability models through the integration of a weighted mechanism that accounts for the biological significance, alongside a ground truth construction method to evaluate prediction transparency. The experimental results demonstrate that IDDGCN outperforms existing state-of-the-art models, exhibiting excellent predictive power. Both qualitative and quantitative evaluations of its interpretability further highlight its ability to explain predictions, offering a fresh perspective for precision oncology and targeted drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助吉吉采纳,获得10
1秒前
6秒前
晴朗发布了新的文献求助10
13秒前
沉静摇伽发布了新的文献求助10
23秒前
banbieshenlu完成签到,获得积分10
25秒前
27秒前
ding应助taysun采纳,获得10
28秒前
28秒前
Shihan完成签到,获得积分10
30秒前
牛肉面完成签到,获得积分10
33秒前
小马甲应助大力的图图采纳,获得10
33秒前
生椰拿铁发布了新的文献求助10
34秒前
在水一方应助Shihan采纳,获得10
35秒前
whick发布了新的文献求助10
36秒前
42秒前
忽远忽近的她完成签到 ,获得积分10
44秒前
44秒前
量子星尘发布了新的文献求助10
44秒前
喵了个咪发布了新的文献求助10
47秒前
晴朗完成签到 ,获得积分10
47秒前
米龙完成签到,获得积分10
50秒前
ssch197完成签到 ,获得积分10
50秒前
彭于晏应助凡凡采纳,获得30
53秒前
喵了个咪完成签到 ,获得积分10
57秒前
1分钟前
Chris完成签到 ,获得积分10
1分钟前
1分钟前
凡凡发布了新的文献求助30
1分钟前
1分钟前
科研通AI2S应助李联洪采纳,获得10
1分钟前
科研通AI2S应助Shihan采纳,获得10
1分钟前
onelastkiss给onelastkiss的求助进行了留言
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
江流儿完成签到,获得积分10
1分钟前
1分钟前
雪白冥茗完成签到 ,获得积分10
1分钟前
卷毛维安发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112