分离式霍普金森压力棒
微尺度化学
应变率
复合材料
材料科学
剪切(地质)
微观力学
横截面
本构方程
结构工程
数学
工程类
复合数
有限元法
数学教育
作者
Yangxuan Zhu,Chunwang He,Tian Zhao,Ying Li
标识
DOI:10.1016/j.tws.2024.112188
摘要
In this paper, a dynamic multiscale model is proposed for three-dimensional four-directional (3D4D) braided composites, considering the effects of strain rate and shear enhanced failure mechanism. The strain rate-dependent constitutive models are established for both resin and yarns. The accuracy of the yarn model is validated by comparing the simulated stress-strain curves with the experimental results obtained from the Split Hopkinson Pressure Bar (SHPB) tests with various strain rates. The shear enhancement coefficient of the yarn is determined from the failure envelopes with a discussion of crack propagation angles. The results show that, based on the calculated microscale properties, the mesoscale model accurately predicts both the longitudinal and transverse compressive strain-stress behavior of 3D4D braided composites at different strain rates. A comparative analysis reveals that the shear-enhanced failure model achieves a better prediction compared with other counterparts, such as Hashin-Rotem and Tsai-Wu Models. The proposed dynamic multiscale scheme for 3D braided composites is an efficient and accurate tool to characterize their multiscale features and strain rate-dependent behavior.
科研通智能强力驱动
Strongly Powered by AbleSci AI