Improved GNN based on Graph-Transformer: A new framework for rolling mill bearing fault diagnosis

平滑的 变压器 轧机 图形 磨坊 振动 计算机科学 故障检测与隔离 控制理论(社会学) 工程类 模式识别(心理学) 机械工程 人工智能 电气工程 电压 计算机视觉 执行机构 理论计算机科学 量子力学 物理 控制(管理)
作者
Dongxiao Hou,Bo Zhang,Jiahui Chen,Peiming Shi
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
被引量:5
标识
DOI:10.1177/01423312241265774
摘要

The structure of the rolling mill system is complex and the operating conditions are changeable. Therefore, the interdependence between the data needs to be fully considered in the fault diagnosis of the rolling mill. Although graph neural network (GNN) is a powerful architecture based on non-Euclidean spatial data, the current method is difficult to represent the long-range dependence of rolling mill fault vibration signals. Simply increasing the depth of GNN is not enough to expand the receptive field of the model, because the larger GNN model may have the problem of gradient disappearance or transition smoothing. In order to solve the above problems, an improved graph neural network based on Graph-Transformer is proposed to diagnose the health status of rolling mill. This method first performs sliding maximum sampling on the spectrum of the original vibration signal to improve the frequency resolution and reduce the feature dimension. Second, the relationship between fault features is characterized by constructing affinity graph. Finally, the long-range dependency between paired features is learned through the readout module and the self-attention mechanism in Graph-Transformer and the diagnostic results are output by the classifier. The experimental results on the rolling mill platform show that this method can not only adapt to the changing working conditions of the rolling mill but also achieve excellent performance in the case of sample imbalance and strong noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
量子星尘发布了新的文献求助30
4秒前
4秒前
机灵水卉发布了新的文献求助10
4秒前
科研通AI2S应助永远55度采纳,获得10
5秒前
念知秋完成签到,获得积分10
6秒前
6秒前
tinale_huang完成签到,获得积分10
7秒前
7秒前
南音发布了新的文献求助10
7秒前
7秒前
qin发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
碧蓝青梦发布了新的文献求助10
10秒前
10秒前
南音发布了新的文献求助10
11秒前
展锋发布了新的文献求助10
11秒前
南音发布了新的文献求助10
11秒前
12秒前
SciGPT应助一二采纳,获得10
12秒前
12秒前
13秒前
14秒前
15秒前
qiqi完成签到 ,获得积分10
16秒前
16秒前
li发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
谨慎的鞅发布了新的文献求助10
17秒前
高兴的彩虹完成签到,获得积分10
18秒前
tinale_huang发布了新的文献求助30
18秒前
19秒前
尘曦完成签到,获得积分10
19秒前
情怀应助kk采纳,获得10
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752350
求助须知:如何正确求助?哪些是违规求助? 5473586
关于积分的说明 15373469
捐赠科研通 4891370
什么是DOI,文献DOI怎么找? 2630367
邀请新用户注册赠送积分活动 1578540
关于科研通互助平台的介绍 1534511