The Decoupling Concept Bottleneck Model

计算机科学 瓶颈 人工智能 解耦(概率) 数据挖掘 机器学习 工程类 控制工程 嵌入式系统
作者
Rui Zhang,Xingbo Du,Junchi Yan,Shihua Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:2
标识
DOI:10.1109/tpami.2024.3489597
摘要

The Concept Bottleneck Model (CBM) is an interpretable neural network that leverages high-level concepts to explain model decisions and conduct human-machine interaction. However, in real-world scenarios, the deficiency of informative concepts can impede the model's interpretability and subsequent interventions. This paper proves that insufficient concept information can lead to an inherent dilemma of concept and label distortions in CBM. To address this challenge, we propose the Decoupling Concept Bottleneck Model (DCBM), which comprises two phases: 1) DCBM for prediction and interpretation, which decouples heterogeneous information into explicit and implicit concepts while maintaining high label and concept accuracy, and 2) DCBM for human-machine interaction, which automatically corrects labels and traces wrong concepts via mutual information estimation. The construction of the interaction system can be formulated as a light min-max optimization problem. Extensive experiments expose the success of alleviating concept/label distortions, especially when concepts are insufficient. In particular, we propose the Concept Contribution Score (CCS) to quantify the interpretability of DCBM. Numerical results demonstrate that CCS can be guaranteed by the Jensen-Shannon divergence constraint in DCBM. Moreover, DCBM expresses two effective human-machine interactions, including forward intervention and backward rectification, to further promote concept/label accuracy via interaction with human experts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yu发布了新的文献求助10
刚刚
起司嗯应助科研通管家采纳,获得10
刚刚
nano应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
良辰应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
从容芮应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
1秒前
从容芮应助科研通管家采纳,获得10
1秒前
英俊延恶发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
从容芮应助科研通管家采纳,获得10
1秒前
研友_ZbM2qn应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
nacheol应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
王武王夫完成签到,获得积分10
1秒前
良辰应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
2秒前
桃子发布了新的文献求助10
3秒前
高兴515发布了新的文献求助10
3秒前
3秒前
4秒前
NXK发布了新的文献求助10
4秒前
4秒前
wisteety发布了新的文献求助10
5秒前
抹茶泡泡完成签到 ,获得积分10
5秒前
优秀不愁发布了新的文献求助10
5秒前
6秒前
6秒前
冬冬应助迷路的曼梅采纳,获得10
6秒前
凡凡发布了新的文献求助10
6秒前
zhihaijun完成签到,获得积分10
6秒前
慕青应助顺心冬易采纳,获得10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626