Constructing machine learning models based on non-contrast CT radiomics to predict hemorrhagic transformation after stoke: a two-center study

医学 逻辑回归 无线电技术 接收机工作特性 冲程(发动机) 回顾性队列研究 放射科 队列 内科学 机械工程 工程类
作者
Yue Zhang,Gang Xie,Lingfeng Zhang,Junlin Li,Wuli Tang,Danni Wang,Ling Yang,Kang Li
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fneur.2024.1413795
摘要

Purpose Machine learning (ML) models were constructed according to non-contrast computed tomography (NCCT) images as well as clinical and laboratory information to assess risk stratification for the occurrence of hemorrhagic transformation (HT) in acute ischemic stroke (AIS) patients. Methods A retrospective cohort was constructed with 180 AIS patients who were diagnosed at two centers between January 2019 and October 2023 and were followed for HT outcomes. Patients were analyzed for clinical risk factors for developing HT, infarct texture features were extracted from NCCT images, and the radiomics score (Rad-score) was calculated. Then, five ML models were established and evaluated, and the optimal ML algorithm was used to construct the clinical, radiomics, and clinical-radiomics models. Receiver operating characteristic (ROC) curves were used to compare the performance of the three models in predicting HT. Results Based on the outcomes of the AIS patients, 104 developed HT, and the remaining 76 had no HT. The HT group consisted of 27 hemorrhagic infarction (HI) and 77 parenchymal-hemorrhage (PH). Patients with HT had a greater neutrophil-to-lymphocyte ratio (NLR), baseline National Institutes of Health Stroke Scale (NIHSS) score, infarct volume, and Rad-score and lower Alberta stroke program early CT score (ASPECTS) (all p < 0.01) than patients without HT. The best ML algorithm for building the model was logistic regression. In the training and validation cohorts, the AUC values for the clinical, radiomics, and clinical-radiomics models for predicting HT were 0.829 and 0.876, 0.813 and 0.898, and 0.876 and 0.957, respectively. In subgroup analyses with different treatment modalities, different infarct sizes, and different stroke time windows, the assessment accuracy of the clinical-radiomics model was not statistically meaningful (all p > 0.05), with an overall accuracy of 79.5%. Moreover, this model performed reliably in predicting the PH and HI subcategories, with accuracies of 82.9 and 92.9%, respectively. Conclusion ML models based on clinical and NCCT radiomics characteristics can be used for early risk evaluation of HT development in AIS patients and show great potential for clinical precision in treatment and prognostic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尊敬枕头完成签到 ,获得积分10
3秒前
单薄松鼠完成签到 ,获得积分10
4秒前
Ivan完成签到 ,获得积分10
7秒前
年糕完成签到 ,获得积分10
11秒前
ccczzzyyy完成签到,获得积分10
14秒前
华仔应助科研通管家采纳,获得10
16秒前
Ray完成签到 ,获得积分10
20秒前
彩色的冷梅完成签到 ,获得积分10
22秒前
小白白白完成签到 ,获得积分10
22秒前
追寻的从云完成签到 ,获得积分10
23秒前
weng完成签到,获得积分10
26秒前
林好人完成签到,获得积分10
29秒前
冷傲的迎南完成签到 ,获得积分10
32秒前
33秒前
阳炎完成签到,获得积分10
33秒前
自来也完成签到,获得积分10
34秒前
鲨猫收藏家完成签到 ,获得积分10
45秒前
会撒娇的东东完成签到 ,获得积分10
52秒前
娟儿完成签到 ,获得积分10
52秒前
可靠的无血完成签到,获得积分10
53秒前
雁塔完成签到 ,获得积分10
58秒前
怡然白竹完成签到 ,获得积分10
1分钟前
Leviathan完成签到 ,获得积分10
1分钟前
WD完成签到 ,获得积分10
1分钟前
茅十八完成签到,获得积分10
1分钟前
blissche完成签到 ,获得积分10
1分钟前
LHH完成签到 ,获得积分10
1分钟前
关中人完成签到,获得积分10
1分钟前
昵称完成签到 ,获得积分10
1分钟前
舒适的涑完成签到 ,获得积分10
1分钟前
李健应助去去去去采纳,获得10
1分钟前
稳重完成签到 ,获得积分10
1分钟前
monster完成签到 ,获得积分10
1分钟前
slsdianzi完成签到,获得积分10
1分钟前
1分钟前
salty完成签到 ,获得积分10
1分钟前
繁荣的映雁完成签到,获得积分10
1分钟前
wp4455777完成签到,获得积分10
1分钟前
南城完成签到 ,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171668
求助须知:如何正确求助?哪些是违规求助? 2822467
关于积分的说明 7939330
捐赠科研通 2483112
什么是DOI,文献DOI怎么找? 1322990
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647