亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A robust real‐time method for identifying hydraulic tunnel structural defects using deep learning and computer vision

人工智能 计算机科学 稳健性(进化) 计算机视觉 模式识别(心理学) 生物化学 基因 化学
作者
Yangtao Li,Tengfei Bao,Tianyu Li,Ruijie Wang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (10): 1381-1399 被引量:39
标识
DOI:10.1111/mice.12949
摘要

Abstract Robots with cameras provide a non‐contact information acquisition solution for hydraulic tunnels, while manual damage‐related information extraction is time‐consuming and costs labor. This study proposes a robust real‐time framework for identifying hydraulic tunnel underwater structural damage using deep learning and computer vision. First, a high‐performance detector is built via the You Only Look Once v5s and adaptively spatial feature fusion module. A series of comparative experiments are used to explore the setting of the sparsification and pruning ratios to trade off a balance between accuracy and efficiency. Model sparsity ratio of 0.01 with a pruning ratio of 0.3 can be combined to change the weight distribution in the batch normalization layer and reduce network redundant parameters for slimming. Then, model fine‐tuning with knowledge distillation is utilized to recover the accuracy degradation caused by pruning. A hydraulic tunnel is utilized as the case study, and three defects including rust, exfoliation, and calcification precipitate are utilized as research items. The performance of the models was evaluated based on detection accuracy, robustness, and efficiency. Five extreme attributes of underwater scenes, including oblique angles, high brightness, uneven illumination, low visibility, and obstacle interference, were considered to test model generalization and efficacy. Experimental results show it achieves good detection performance in complicated underwater scenes, achieving 0.814 precision, 0.980 recall, 0.889 F1_score, and 0.894 Mean Average Precision (mAP)@0.5 in the test set. Moreover, the proposed method achieved a 50 Frames Per Second (FPS) detection speed when detecting video with 1080p, indicating its real‐time detection capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不攻自破发布了新的文献求助10
3秒前
YifanWang应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
CodeCraft应助乐乐洛洛采纳,获得10
31秒前
科研通AI5应助不攻自破采纳,获得10
34秒前
46秒前
48秒前
50秒前
激动的似狮完成签到,获得积分10
52秒前
不攻自破发布了新的文献求助10
53秒前
乐乐洛洛发布了新的文献求助10
54秒前
科研通AI5应助彼岸花开采纳,获得50
55秒前
乐乐洛洛完成签到,获得积分10
59秒前
yangjoy完成签到 ,获得积分10
1分钟前
1分钟前
zombleq完成签到,获得积分10
1分钟前
zombleq发布了新的文献求助10
1分钟前
1分钟前
彼岸花开发布了新的文献求助50
1分钟前
孤独君浩完成签到 ,获得积分10
1分钟前
零度发布了新的文献求助10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
斯文败类应助不攻自破采纳,获得10
2分钟前
不攻自破完成签到,获得积分10
2分钟前
2分钟前
不攻自破发布了新的文献求助10
3分钟前
nav完成签到 ,获得积分10
3分钟前
Rn完成签到 ,获得积分10
5分钟前
顾矜应助罗咩咩采纳,获得10
5分钟前
罗咩咩完成签到,获得积分10
5分钟前
5分钟前
非泥完成签到,获得积分10
5分钟前
罗咩咩发布了新的文献求助10
5分钟前
888完成签到 ,获得积分10
5分钟前
wang完成签到,获得积分10
5分钟前
无花果应助wang采纳,获得30
5分钟前
tracey发布了新的文献求助10
6分钟前
Dritsw应助儒雅老太采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965704
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214