A robust real‐time method for identifying hydraulic tunnel structural defects using deep learning and computer vision

人工智能 计算机科学 稳健性(进化) 计算机视觉 模式识别(心理学) 生物化学 化学 基因
作者
Yangtao Li,Tengfei Bao,Tianyu Li,Ruijie Wang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (10): 1381-1399 被引量:39
标识
DOI:10.1111/mice.12949
摘要

Abstract Robots with cameras provide a non‐contact information acquisition solution for hydraulic tunnels, while manual damage‐related information extraction is time‐consuming and costs labor. This study proposes a robust real‐time framework for identifying hydraulic tunnel underwater structural damage using deep learning and computer vision. First, a high‐performance detector is built via the You Only Look Once v5s and adaptively spatial feature fusion module. A series of comparative experiments are used to explore the setting of the sparsification and pruning ratios to trade off a balance between accuracy and efficiency. Model sparsity ratio of 0.01 with a pruning ratio of 0.3 can be combined to change the weight distribution in the batch normalization layer and reduce network redundant parameters for slimming. Then, model fine‐tuning with knowledge distillation is utilized to recover the accuracy degradation caused by pruning. A hydraulic tunnel is utilized as the case study, and three defects including rust, exfoliation, and calcification precipitate are utilized as research items. The performance of the models was evaluated based on detection accuracy, robustness, and efficiency. Five extreme attributes of underwater scenes, including oblique angles, high brightness, uneven illumination, low visibility, and obstacle interference, were considered to test model generalization and efficacy. Experimental results show it achieves good detection performance in complicated underwater scenes, achieving 0.814 precision, 0.980 recall, 0.889 F1_score, and 0.894 Mean Average Precision (mAP)@0.5 in the test set. Moreover, the proposed method achieved a 50 Frames Per Second (FPS) detection speed when detecting video with 1080p, indicating its real‐time detection capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助开心小兔子采纳,获得30
1秒前
SciGPT应助扑火退羽采纳,获得10
1秒前
芒果布丁完成签到 ,获得积分10
1秒前
丹dan完成签到,获得积分10
1秒前
干净映天发布了新的文献求助10
1秒前
沙珠发布了新的文献求助10
2秒前
00发布了新的文献求助10
3秒前
科研通AI6应助鹤轸采纳,获得10
3秒前
饿崽要吃饭完成签到,获得积分10
5秒前
西米发布了新的文献求助10
5秒前
5秒前
欢呼的忘幽完成签到,获得积分10
6秒前
852应助啊哈采纳,获得10
6秒前
6秒前
千北发布了新的文献求助10
7秒前
justdoit发布了新的文献求助20
9秒前
01完成签到 ,获得积分10
9秒前
Orange应助哈哈采纳,获得20
9秒前
唠叨的凌雪完成签到,获得积分10
10秒前
10秒前
11秒前
搜集达人应助彭彭采纳,获得10
11秒前
Wang发布了新的文献求助10
11秒前
科研通AI6应助liu采纳,获得10
12秒前
Steffi完成签到,获得积分10
12秒前
wei完成签到,获得积分10
12秒前
13秒前
13秒前
深情安青应助鹤轸采纳,获得10
13秒前
14秒前
nenoaowu发布了新的文献求助10
16秒前
寒冷河马发布了新的文献求助10
16秒前
LX完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
NexusExplorer应助秀丽如松采纳,获得10
17秒前
17秒前
zhangyx发布了新的文献求助10
17秒前
20秒前
21秒前
CipherSage应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420029
求助须知:如何正确求助?哪些是违规求助? 4535248
关于积分的说明 14148708
捐赠科研通 4452114
什么是DOI,文献DOI怎么找? 2441989
邀请新用户注册赠送积分活动 1433552
关于科研通互助平台的介绍 1410775