Circuit depth scaling for quantum approximate optimization

量子位元 量子 量子电路 缩放比例 计算机科学 量子算法 量子计算机 算法 数学优化 数学 应用数学 量子纠错 量子力学 物理 几何学
作者
V. Akshay,H. Philathong,E. Campos,D. S. Rabinovich,I. Zacharov,Xiaoming Zhang,Jacob Biamonte
出处
期刊:Physical review [American Physical Society]
卷期号:106 (4) 被引量:4
标识
DOI:10.1103/physreva.106.042438
摘要

Variational quantum algorithms are the centerpiece of modern quantum programming. These algorithms involve training parametrized quantum circuits using a classical coprocessor, an approach adapted partly from classical machine learning. An important subclass of these algorithms, designed for combinatorial optimization on current quantum hardware, is the quantum approximate optimization algorithm (QAOA). Despite efforts to realize deeper circuits, experimental state-of-the-art implementations are limited to a fixed depth. However, it is known that problem density---a problem constraint to a variable ratio---induces underparametrization in fixed depth QAOA. Density-dependent performance has been reported in the literature, yet the circuit depth required to achieve fixed performance (henceforth called critical depth) remained unknown. Here, we propose a predictive model, based on a logistic saturation conjecture for critical depth scaling with respect to density. Focusing on random instances of MAX-2-SAT, we test our predictive model against simulated data with up to 15 qubits. We report the average critical depth, required to attain a success probability of 0.7, saturates at a value of 10 for densities beyond 4. We observe the predictive model to describe the simulated data within a $3\ensuremath{\sigma}$ confidence interval. Furthermore, based on the model, a linear trend for the critical depth with respect to problem size is recovered for the range of 5--15 qubits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
1秒前
2秒前
2秒前
world完成签到,获得积分10
4秒前
风趣的泥猴桃完成签到,获得积分10
4秒前
4秒前
5秒前
grisco完成签到,获得积分10
5秒前
5秒前
搜集达人应助123采纳,获得10
6秒前
6秒前
EgoElysia发布了新的文献求助10
7秒前
7秒前
8秒前
科研小贩发布了新的文献求助10
9秒前
whatever应助Tao采纳,获得10
10秒前
grisco发布了新的文献求助10
11秒前
12秒前
12秒前
puzi发布了新的文献求助10
12秒前
ailsa发布了新的文献求助10
13秒前
HHHHH发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
热情无心完成签到,获得积分10
15秒前
风清扬发布了新的文献求助10
15秒前
shuiyu发布了新的文献求助10
16秒前
那咋了发布了新的文献求助10
16秒前
小马甲应助echoxq采纳,获得10
16秒前
16秒前
17秒前
js关闭了js文献求助
18秒前
小刘哥加油完成签到 ,获得积分10
18秒前
123发布了新的文献求助10
19秒前
慈祥的煎蛋完成签到,获得积分10
20秒前
虾米发布了新的文献求助10
20秒前
在水一方应助纳斯达克采纳,获得10
20秒前
13333完成签到,获得积分10
21秒前
Hello应助小周采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028