卷积神经网络
计算机科学
激发
阶段(地层学)
人工智能
肺癌
人工神经网络
模式识别(心理学)
医学
病理
物理
地质学
量子力学
古生物学
作者
Shweta Tyagi,Sanjay N. Talbar
标识
DOI:10.1016/j.bspc.2022.104391
摘要
Lung cancer, the deadliest disease worldwide, poses a massive threat to humankind. Various researchers have designed Computer-Aided-Diagnosis systems for the early-stage detection of lung cancer. However, patients are primarily diagnosed in advanced stages when treatment becomes complicated and dependent on multiple factors like size, nature, location of the tumor, and proper cancer staging. TNM (Tumor, Node, and Metastasis) staging provides all this information. This study aims to develop a novel and efficient approach to classify lung cancer stages based on TNM standards. We propose a multi-level 3D deep convolutional neural network, LCSCNet (Lung Cancer Stage Classification Network). The proposed network architecture consists of three similar classifier networks to classify three labels, T, N, and M-labels. First, we pre-process the data, in which the CT images are augmented, and the label files are processed to get the corresponding TNM labels. For the classification network, we implement a dense convolutional neural network with a concurrent squeeze & excitation module and asymmetric convolutions for classifying each label separately. The overall stage is determined by combining all three labels. The concurrent squeeze & excitation module helps the network focus on the essential information of the image, due to which the classification performance is enhanced. The asymmetric convolutions are introduced to reduce the computation complexity of the network. Two publicly available datasets are used for this study. We achieved average accuracies of 96.23% for T-Stage, 97.63% for N-Stage, and 96.92% for M-Stage classification. Furthermore, an overall stage classification accuracy of 97% is achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI