LCSCNet: A multi-level approach for lung cancer stage classification using 3D dense convolutional neural networks with concurrent squeeze-and-excitation module

卷积神经网络 计算机科学 激发 阶段(地层学) 人工智能 肺癌 人工神经网络 模式识别(心理学) 医学 病理 物理 地质学 量子力学 古生物学
作者
Shweta Tyagi,Sanjay N. Talbar
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104391-104391
标识
DOI:10.1016/j.bspc.2022.104391
摘要

Lung cancer, the deadliest disease worldwide, poses a massive threat to humankind. Various researchers have designed Computer-Aided-Diagnosis systems for the early-stage detection of lung cancer. However, patients are primarily diagnosed in advanced stages when treatment becomes complicated and dependent on multiple factors like size, nature, location of the tumor, and proper cancer staging. TNM (Tumor, Node, and Metastasis) staging provides all this information. This study aims to develop a novel and efficient approach to classify lung cancer stages based on TNM standards. We propose a multi-level 3D deep convolutional neural network, LCSCNet (Lung Cancer Stage Classification Network). The proposed network architecture consists of three similar classifier networks to classify three labels, T, N, and M-labels. First, we pre-process the data, in which the CT images are augmented, and the label files are processed to get the corresponding TNM labels. For the classification network, we implement a dense convolutional neural network with a concurrent squeeze & excitation module and asymmetric convolutions for classifying each label separately. The overall stage is determined by combining all three labels. The concurrent squeeze & excitation module helps the network focus on the essential information of the image, due to which the classification performance is enhanced. The asymmetric convolutions are introduced to reduce the computation complexity of the network. Two publicly available datasets are used for this study. We achieved average accuracies of 96.23% for T-Stage, 97.63% for N-Stage, and 96.92% for M-Stage classification. Furthermore, an overall stage classification accuracy of 97% is achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
怕黑半仙应助圆锥香蕉采纳,获得50
1秒前
量子星尘发布了新的文献求助10
1秒前
lmw完成签到,获得积分20
2秒前
完美世界应助狂野芷蕾采纳,获得10
3秒前
坚强慕蕊发布了新的文献求助10
3秒前
4秒前
农场主发布了新的文献求助10
5秒前
msk发布了新的文献求助10
9秒前
章英健完成签到,获得积分10
10秒前
13秒前
章英健发布了新的文献求助10
14秒前
14秒前
plant发布了新的文献求助10
17秒前
17秒前
21秒前
YoursSummer发布了新的文献求助10
21秒前
迨你个迨迨完成签到,获得积分20
22秒前
22秒前
23秒前
24秒前
24秒前
sy完成签到,获得积分10
25秒前
26秒前
sy发布了新的文献求助10
27秒前
秀丽友灵发布了新的文献求助10
28秒前
28秒前
orixero应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
28秒前
15902933324sjc完成签到,获得积分10
29秒前
小二郎应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
29秒前
SciGPT应助科研通管家采纳,获得30
29秒前
情怀应助科研通管家采纳,获得10
29秒前
29秒前
Ava应助科研通管家采纳,获得10
29秒前
Rondab应助科研通管家采纳,获得20
29秒前
31秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167