Which Surface Is More Scaling Resistant? A Closer Look at Nucleation Theories for Heterogeneous Gypsum Nucleation in Aqueous Solutions

缩放比例 石膏 成核 润湿 水溶液 化学物理 表面能 材料科学 基质(水族馆) 化学工程 化学 物理化学 复合材料 地质学 几何学 数学 有机化学 工程类 海洋学
作者
Yiming Yin,Tianshu Li,Kuichang Zuo,Xitong Liu,Shihong Lin,Yiqun Yao,Tiezheng Tong
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (22): 16315-16324 被引量:43
标识
DOI:10.1021/acs.est.2c06560
摘要

Developing engineered surfaces with scaling resistance is an effective means to inhibit surface-mediated mineral scaling in various industries including desalination. However, contrasting results have been reported on the relationship between scaling potential and surface hydrophilicity. In this study, we combine a theoretical analysis with experimental investigation to clarify the effect of surface wetting property on heterogeneous gypsum (CaSO4·2H2O) formation on surfaces immersed in aqueous solutions. Theoretical prediction derived from classical nucleation theory (CNT) indicates that an increase of surface hydrophobicity reduces scaling potential, which contrasts our experimental results that more hydrophilic surfaces are less prone to gypsum scaling. We further consider the possibility of nonclassical pathway of gypsum nucleation, which proceeds by the aggregation of precursor clusters of CaSO4. Accordingly, we investigate the affinity of CaSO4 to substrate surfaces of varied wetting properties via calculating the total free energy of interaction, with the results perfectly predicting experimental observations of surface scaling propensity. This indicates that the interactions between precursor clusters of CaSO4 and substrate surfaces might play an important role in regulating heterogeneous gypsum formation. Our findings provide evidence that CNT might not be applicable to describing gypsum scaling in aqueous solutions. The fundamental insights we reveal on gypsum scaling mechanisms have the potential to guide rational design of scaling-resistant engineered surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助WB采纳,获得10
1秒前
2秒前
2秒前
魔幻诗兰完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
stellc完成签到,获得积分10
3秒前
3秒前
祝你开心发布了新的文献求助10
4秒前
追寻宛海完成签到,获得积分10
5秒前
KKK发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
迷人静白完成签到,获得积分10
7秒前
7秒前
8秒前
wangye发布了新的文献求助10
8秒前
wanci应助zyyyyyyyy采纳,获得10
8秒前
8秒前
追寻宛海发布了新的文献求助15
9秒前
9秒前
复杂惜霜发布了新的文献求助10
9秒前
Jasper应助激昂的逊采纳,获得10
9秒前
黎先生发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
wanci应助务实的西牛采纳,获得10
11秒前
彭于晏应助ww采纳,获得10
11秒前
浮游应助勇yi采纳,获得10
11秒前
11秒前
怀玉发布了新的文献求助10
13秒前
科研通AI6应助SONG采纳,获得10
13秒前
科研通AI6应助是why耶采纳,获得10
13秒前
13秒前
eijgnij发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901