A disentangled linguistic graph model for explainable aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 自然语言处理 透明度(行为) 图形 机器学习 理论计算机科学 计算机安全
作者
Xiaoyong Mei,Yougen Zhou,Chenjing Zhu,Mengting Wu,Ming Li,Shirui Pan
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:260: 110150-110150 被引量:13
标识
DOI:10.1016/j.knosys.2022.110150
摘要

Aspect-based sentiment analysis (ABSA) aims to use interactions between aspect terms and their contexts to predict sentiment polarity for given aspects in sentences. Current mainstream approaches use deep neural networks (DNNs) combined with additional linguistic information to improve performance. DNN-based methods, however, lack explanation and transparency to support predictions, and no existing model completely solves the trade-off between explainability and performance. In contrast, most previous studies explain the relationship between input and output by attribution; however, this approach is insufficient to mine hidden semantics from abstract features. To overcome the aforementioned limitations, we propose a disentangled linguistic graph model (DLGM) to enhance transparency and performance by guiding the signal flow. First, we propose a disentangled linguistic representation learning module that extracts a specific linguistic property via neurons to help capture finer feature representations. To further boost explainability, we propose a supervised disentangling module, in which labeled linguistic data help reduce information redundancy. Finally, a cross-linguistic routing mechanism is introduced into the signal propagation of linguistic chunks to overcome the defect of distilling information in an intralinguistic property. Quantitative and qualitative experiments verify the effectiveness and superiority of the proposed DLGM in sentiment polarity classification and explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiaolu发布了新的文献求助10
1秒前
fff完成签到,获得积分10
1秒前
孙常浩发布了新的文献求助10
2秒前
Coral.完成签到,获得积分10
2秒前
一一完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
今后应助油条咔咔咔采纳,获得10
3秒前
春风十里发布了新的文献求助10
3秒前
3秒前
yannnn完成签到,获得积分10
3秒前
dadii发布了新的文献求助10
4秒前
可达鸭应助stop here采纳,获得10
4秒前
疯狂的冬瓜完成签到,获得积分10
4秒前
fyyldragon完成签到,获得积分10
5秒前
nebula应助昏睡的蟠桃采纳,获得10
5秒前
yaw发布了新的文献求助10
6秒前
博博儿完成签到 ,获得积分10
6秒前
钩子89发布了新的文献求助10
7秒前
万能图书馆应助Emma采纳,获得10
7秒前
豆豆小baby完成签到,获得积分10
7秒前
jiao发布了新的文献求助10
8秒前
公交卡完成签到,获得积分10
8秒前
geopotter完成签到,获得积分10
8秒前
XIAOWANG完成签到,获得积分10
8秒前
Biyanchao发布了新的文献求助10
8秒前
Ade完成签到,获得积分10
8秒前
慕青应助啊薇儿采纳,获得10
9秒前
wen发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
ruanruan完成签到,获得积分10
10秒前
10秒前
thginK9z完成签到,获得积分10
11秒前
qiqiqiqiqi完成签到 ,获得积分10
12秒前
后知后觉完成签到,获得积分10
12秒前
情怀应助linmo采纳,获得10
12秒前
黄黄黄应助科研通管家采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993