A disentangled linguistic graph model for explainable aspect-based sentiment analysis

计算机科学 情绪分析 人工智能 自然语言处理 透明度(行为) 图形 机器学习 理论计算机科学 计算机安全
作者
Xiaoyong Mei,Yougen Zhou,Chenjing Zhu,Mengting Wu,Ming Li,Shirui Pan
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:260: 110150-110150 被引量:4
标识
DOI:10.1016/j.knosys.2022.110150
摘要

Aspect-based sentiment analysis (ABSA) aims to use interactions between aspect terms and their contexts to predict sentiment polarity for given aspects in sentences. Current mainstream approaches use deep neural networks (DNNs) combined with additional linguistic information to improve performance. DNN-based methods, however, lack explanation and transparency to support predictions, and no existing model completely solves the trade-off between explainability and performance. In contrast, most previous studies explain the relationship between input and output by attribution; however, this approach is insufficient to mine hidden semantics from abstract features. To overcome the aforementioned limitations, we propose a disentangled linguistic graph model (DLGM) to enhance transparency and performance by guiding the signal flow. First, we propose a disentangled linguistic representation learning module that extracts a specific linguistic property via neurons to help capture finer feature representations. To further boost explainability, we propose a supervised disentangling module, in which labeled linguistic data help reduce information redundancy. Finally, a cross-linguistic routing mechanism is introduced into the signal propagation of linguistic chunks to overcome the defect of distilling information in an intralinguistic property. Quantitative and qualitative experiments verify the effectiveness and superiority of the proposed DLGM in sentiment polarity classification and explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔治韦斯莱完成签到 ,获得积分10
刚刚
Jenny应助圈圈采纳,获得10
刚刚
刚刚
呆萌完成签到 ,获得积分10
刚刚
啾啾完成签到,获得积分10
刚刚
脑洞疼应助hhy采纳,获得10
1秒前
Zhong发布了新的文献求助10
3秒前
3秒前
神仙也抠脚丫完成签到,获得积分10
3秒前
3秒前
4秒前
岩中花树完成签到,获得积分10
4秒前
4秒前
科研小白完成签到,获得积分10
5秒前
5秒前
追梦发布了新的文献求助10
5秒前
5秒前
豆包完成签到,获得积分10
5秒前
怕孤单的耳机完成签到,获得积分10
5秒前
成就梦松发布了新的文献求助10
5秒前
Donnie发布了新的文献求助10
6秒前
scc完成签到,获得积分10
6秒前
呼叫554发布了新的文献求助30
6秒前
Ava应助向北游采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
科研通AI5应助MRCHONG采纳,获得10
7秒前
Simon应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
wangg完成签到,获得积分20
7秒前
7秒前
Zn应助科研通管家采纳,获得20
7秒前
吹雪完成签到,获得积分0
7秒前
暴躁四叔应助科研通管家采纳,获得20
8秒前
8秒前
wanci应助科研通管家采纳,获得30
8秒前
8秒前
hhh发布了新的文献求助10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672