GC×GC data visualization, processing, and analysis

可视化 分析物 预处理器 模式识别(心理学) 人工智能 计算机科学 探测器 数据挖掘 化学 色谱法 电信
作者
Stephen E. Reichenbach
出处
期刊:Comprehensive Analytical Chemistry 卷期号:: 185-229
标识
DOI:10.1016/bs.coac.2021.10.006
摘要

Comprehensive two-dimensional gas chromatography (GC × GC) produces large and complex multidimensional data that requires computer software for visualization, processing, and analysis. For visualization, one-dimensional, time-ordered data from the detector(s) must be rasterized for the two chromatographic dimensions. Additionally, mass spectrometry (MS) data has a spectral dimension that requires indexing for access and visualization. Computer visualization techniques include one-dimensional graphs, two-dimensional images, and three-dimensional projections that can use colour and time dimensions to increase visual communication of the chromatographic and spectral features. Fundamental data processing includes data preprocessing, peak detection, and analyte identification. Two important data preprocessing steps are modulation-phase adjustment and detector-baseline correction. For GC × GC, peak detection requires delineating two-dimensional, unimodal regions (blobs) that are the chromatographic responses to analytes. Coeluted analytes may require unmixing or deconvolving blobs. Analyte identification typically involves recognizing patterns of retention times and/or spectra, e.g., by matching a predefined template representing the retention-times pattern and other characteristics of target peaks to detected peaks or by matching detected mass spectra to those in a spectral library. Higher-level analysis uses the metadata from detected analytes, e.g., compiled in a table, for tasks such as identification, classification, and regression. For example, a chemical fingerprint might be used to identify the source of an olive oil, to classify its quality, or to assess ripeness. Machine learning is important area of pattern analysis research in which chromatographic assays of many samples from different individuals or classes are used to develop methods for identification, classification, and regression analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分20
刚刚
1秒前
义气严青完成签到,获得积分10
1秒前
李爱国应助子车雁开采纳,获得10
1秒前
2秒前
生动的松完成签到,获得积分10
4秒前
Hello应助音悦台采纳,获得10
5秒前
ipan918完成签到,获得积分10
5秒前
科目三应助Valtpus采纳,获得10
6秒前
6秒前
独特鱼发布了新的文献求助10
6秒前
marksman发布了新的文献求助10
6秒前
123完成签到,获得积分10
6秒前
6秒前
哆啦B梦应助友好诗柳采纳,获得10
7秒前
7秒前
北诗发布了新的文献求助10
8秒前
胡憨憨发布了新的文献求助20
8秒前
8秒前
9秒前
allenice完成签到,获得积分10
10秒前
汉堡包应助久久采纳,获得30
10秒前
卿莞尔完成签到 ,获得积分10
10秒前
小蓝完成签到,获得积分10
11秒前
potatozhou完成签到,获得积分10
12秒前
pianokjt发布了新的文献求助10
12秒前
orixero应助jzyy采纳,获得10
12秒前
hai发布了新的文献求助10
12秒前
憨憨鱼发布了新的文献求助10
12秒前
13秒前
wuujuan完成签到,获得积分10
13秒前
luoyulin完成签到,获得积分10
14秒前
14秒前
14秒前
小七啊发布了新的文献求助10
14秒前
14秒前
meetland完成签到 ,获得积分10
15秒前
wanci应助js110采纳,获得10
15秒前
15秒前
aaa发布了新的文献求助10
16秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180636
求助须知:如何正确求助?哪些是违规求助? 2830962
关于积分的说明 7981889
捐赠科研通 2492629
什么是DOI,文献DOI怎么找? 1329721
科研通“疑难数据库(出版商)”最低求助积分说明 635798
版权声明 602954