清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GC×GC data visualization, processing, and analysis

可视化 分析物 预处理器 模式识别(心理学) 人工智能 计算机科学 探测器 数据挖掘 化学 色谱法 电信
作者
Stephen E. Reichenbach
出处
期刊:Comprehensive Analytical Chemistry 卷期号:: 185-229
标识
DOI:10.1016/bs.coac.2021.10.006
摘要

Comprehensive two-dimensional gas chromatography (GC × GC) produces large and complex multidimensional data that requires computer software for visualization, processing, and analysis. For visualization, one-dimensional, time-ordered data from the detector(s) must be rasterized for the two chromatographic dimensions. Additionally, mass spectrometry (MS) data has a spectral dimension that requires indexing for access and visualization. Computer visualization techniques include one-dimensional graphs, two-dimensional images, and three-dimensional projections that can use colour and time dimensions to increase visual communication of the chromatographic and spectral features. Fundamental data processing includes data preprocessing, peak detection, and analyte identification. Two important data preprocessing steps are modulation-phase adjustment and detector-baseline correction. For GC × GC, peak detection requires delineating two-dimensional, unimodal regions (blobs) that are the chromatographic responses to analytes. Coeluted analytes may require unmixing or deconvolving blobs. Analyte identification typically involves recognizing patterns of retention times and/or spectra, e.g., by matching a predefined template representing the retention-times pattern and other characteristics of target peaks to detected peaks or by matching detected mass spectra to those in a spectral library. Higher-level analysis uses the metadata from detected analytes, e.g., compiled in a table, for tasks such as identification, classification, and regression. For example, a chemical fingerprint might be used to identify the source of an olive oil, to classify its quality, or to assess ripeness. Machine learning is important area of pattern analysis research in which chromatographic assays of many samples from different individuals or classes are used to develop methods for identification, classification, and regression analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
George发布了新的文献求助10
7秒前
llll完成签到 ,获得积分0
7秒前
无花果应助Developing_human采纳,获得10
28秒前
30秒前
笔墨纸砚完成签到 ,获得积分10
33秒前
35秒前
汉堡包应助酷酷的大米采纳,获得10
40秒前
酷酷的大米完成签到,获得积分10
46秒前
59秒前
1分钟前
1分钟前
sweet完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得20
1分钟前
和谐的夏岚完成签到 ,获得积分10
2分钟前
Paris完成签到 ,获得积分10
2分钟前
凤迎雪飘完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
天天快乐应助Developing_human采纳,获得10
4分钟前
4分钟前
liu发布了新的文献求助10
4分钟前
郭强完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
liu完成签到,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
5分钟前
博姐37完成签到 ,获得积分10
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664563
求助须知:如何正确求助?哪些是违规求助? 4865032
关于积分的说明 15108031
捐赠科研通 4823202
什么是DOI,文献DOI怎么找? 2582042
邀请新用户注册赠送积分活动 1536153
关于科研通互助平台的介绍 1494545