GC×GC data visualization, processing, and analysis

可视化 分析物 预处理器 模式识别(心理学) 人工智能 计算机科学 探测器 数据挖掘 化学 色谱法 电信
作者
Stephen E. Reichenbach
出处
期刊:Comprehensive Analytical Chemistry 卷期号:: 185-229
标识
DOI:10.1016/bs.coac.2021.10.006
摘要

Comprehensive two-dimensional gas chromatography (GC × GC) produces large and complex multidimensional data that requires computer software for visualization, processing, and analysis. For visualization, one-dimensional, time-ordered data from the detector(s) must be rasterized for the two chromatographic dimensions. Additionally, mass spectrometry (MS) data has a spectral dimension that requires indexing for access and visualization. Computer visualization techniques include one-dimensional graphs, two-dimensional images, and three-dimensional projections that can use colour and time dimensions to increase visual communication of the chromatographic and spectral features. Fundamental data processing includes data preprocessing, peak detection, and analyte identification. Two important data preprocessing steps are modulation-phase adjustment and detector-baseline correction. For GC × GC, peak detection requires delineating two-dimensional, unimodal regions (blobs) that are the chromatographic responses to analytes. Coeluted analytes may require unmixing or deconvolving blobs. Analyte identification typically involves recognizing patterns of retention times and/or spectra, e.g., by matching a predefined template representing the retention-times pattern and other characteristics of target peaks to detected peaks or by matching detected mass spectra to those in a spectral library. Higher-level analysis uses the metadata from detected analytes, e.g., compiled in a table, for tasks such as identification, classification, and regression. For example, a chemical fingerprint might be used to identify the source of an olive oil, to classify its quality, or to assess ripeness. Machine learning is important area of pattern analysis research in which chromatographic assays of many samples from different individuals or classes are used to develop methods for identification, classification, and regression analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助hqq采纳,获得10
刚刚
1秒前
1秒前
天涯明月刀完成签到,获得积分10
1秒前
NexusExplorer应助ww采纳,获得30
1秒前
childe发布了新的文献求助10
3秒前
3秒前
ZHAOyifan完成签到,获得积分10
3秒前
WB发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
852应助ABC采纳,获得10
5秒前
pjson15376449841完成签到,获得积分10
5秒前
生信小菜鸡一枚完成签到,获得积分10
5秒前
老铁子发布了新的文献求助30
6秒前
王丽娟应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得30
6秒前
Jared应助科研通管家采纳,获得10
6秒前
东方元语应助科研通管家采纳,获得20
6秒前
6秒前
Yuzhang21应助科研通管家采纳,获得20
6秒前
xu应助科研通管家采纳,获得10
6秒前
Nirvana应助科研通管家采纳,获得10
6秒前
Teletubbies应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
王丽娟应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
打打应助科研通管家采纳,获得10
7秒前
xu应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
QZR应助科研通管家采纳,获得42
7秒前
Jared应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642013
求助须知:如何正确求助?哪些是违规求助? 4757923
关于积分的说明 15015955
捐赠科研通 4800475
什么是DOI,文献DOI怎么找? 2566095
邀请新用户注册赠送积分活动 1524208
关于科研通互助平台的介绍 1483840