GC×GC data visualization, processing, and analysis

可视化 分析物 预处理器 模式识别(心理学) 人工智能 计算机科学 探测器 数据挖掘 化学 色谱法 电信
作者
Stephen E. Reichenbach
出处
期刊:Comprehensive Analytical Chemistry 卷期号:: 185-229
标识
DOI:10.1016/bs.coac.2021.10.006
摘要

Comprehensive two-dimensional gas chromatography (GC × GC) produces large and complex multidimensional data that requires computer software for visualization, processing, and analysis. For visualization, one-dimensional, time-ordered data from the detector(s) must be rasterized for the two chromatographic dimensions. Additionally, mass spectrometry (MS) data has a spectral dimension that requires indexing for access and visualization. Computer visualization techniques include one-dimensional graphs, two-dimensional images, and three-dimensional projections that can use colour and time dimensions to increase visual communication of the chromatographic and spectral features. Fundamental data processing includes data preprocessing, peak detection, and analyte identification. Two important data preprocessing steps are modulation-phase adjustment and detector-baseline correction. For GC × GC, peak detection requires delineating two-dimensional, unimodal regions (blobs) that are the chromatographic responses to analytes. Coeluted analytes may require unmixing or deconvolving blobs. Analyte identification typically involves recognizing patterns of retention times and/or spectra, e.g., by matching a predefined template representing the retention-times pattern and other characteristics of target peaks to detected peaks or by matching detected mass spectra to those in a spectral library. Higher-level analysis uses the metadata from detected analytes, e.g., compiled in a table, for tasks such as identification, classification, and regression. For example, a chemical fingerprint might be used to identify the source of an olive oil, to classify its quality, or to assess ripeness. Machine learning is important area of pattern analysis research in which chromatographic assays of many samples from different individuals or classes are used to develop methods for identification, classification, and regression analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Orange应助nono采纳,获得10
1秒前
1秒前
3秒前
CHBW发布了新的文献求助10
3秒前
鱼鱼完成签到,获得积分10
4秒前
4秒前
王梦发布了新的文献求助10
4秒前
tianyi完成签到,获得积分20
5秒前
无聊水煮鱼完成签到,获得积分10
5秒前
5秒前
hahahahahe发布了新的文献求助200
6秒前
斯文败类应助阿哲采纳,获得10
7秒前
tianyi发布了新的文献求助10
8秒前
一一发布了新的文献求助10
8秒前
9秒前
XDF完成签到 ,获得积分10
10秒前
刘晓海完成签到,获得积分10
10秒前
10秒前
Owen应助上杉绘梨衣采纳,获得10
10秒前
缓慢沁完成签到,获得积分10
11秒前
悦耳虔纹发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
13秒前
tian发布了新的文献求助10
14秒前
14秒前
云小澈完成签到,获得积分10
15秒前
柏忆南完成签到 ,获得积分10
15秒前
丘比特应助无聊水煮鱼采纳,获得10
17秒前
nono发布了新的文献求助10
17秒前
打打应助kk采纳,获得10
18秒前
科目三应助flysky120采纳,获得10
19秒前
浮游应助zyjsunye采纳,获得10
21秒前
22秒前
针地很不戳完成签到,获得积分10
23秒前
24秒前
2758543477完成签到,获得积分10
25秒前
拉克丝发布了新的文献求助10
26秒前
浮游应助怡然凌兰采纳,获得10
26秒前
Una发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4967242
求助须知:如何正确求助?哪些是违规求助? 4225288
关于积分的说明 13158632
捐赠科研通 4011895
什么是DOI,文献DOI怎么找? 2195351
邀请新用户注册赠送积分活动 1208788
关于科研通互助平台的介绍 1122525