GC×GC data visualization, processing, and analysis

可视化 分析物 预处理器 模式识别(心理学) 人工智能 计算机科学 探测器 数据挖掘 化学 色谱法 电信
作者
Stephen E. Reichenbach
出处
期刊:Comprehensive Analytical Chemistry 卷期号:: 185-229
标识
DOI:10.1016/bs.coac.2021.10.006
摘要

Comprehensive two-dimensional gas chromatography (GC × GC) produces large and complex multidimensional data that requires computer software for visualization, processing, and analysis. For visualization, one-dimensional, time-ordered data from the detector(s) must be rasterized for the two chromatographic dimensions. Additionally, mass spectrometry (MS) data has a spectral dimension that requires indexing for access and visualization. Computer visualization techniques include one-dimensional graphs, two-dimensional images, and three-dimensional projections that can use colour and time dimensions to increase visual communication of the chromatographic and spectral features. Fundamental data processing includes data preprocessing, peak detection, and analyte identification. Two important data preprocessing steps are modulation-phase adjustment and detector-baseline correction. For GC × GC, peak detection requires delineating two-dimensional, unimodal regions (blobs) that are the chromatographic responses to analytes. Coeluted analytes may require unmixing or deconvolving blobs. Analyte identification typically involves recognizing patterns of retention times and/or spectra, e.g., by matching a predefined template representing the retention-times pattern and other characteristics of target peaks to detected peaks or by matching detected mass spectra to those in a spectral library. Higher-level analysis uses the metadata from detected analytes, e.g., compiled in a table, for tasks such as identification, classification, and regression. For example, a chemical fingerprint might be used to identify the source of an olive oil, to classify its quality, or to assess ripeness. Machine learning is important area of pattern analysis research in which chromatographic assays of many samples from different individuals or classes are used to develop methods for identification, classification, and regression analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhgj完成签到,获得积分10
刚刚
周舟完成签到 ,获得积分10
刚刚
Akim应助SIiveryyyy采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
脑洞疼应助weiwei采纳,获得10
5秒前
yzm完成签到,获得积分20
7秒前
7秒前
8秒前
一介书生发布了新的文献求助10
8秒前
9秒前
yzm发布了新的文献求助10
10秒前
小贩发布了新的文献求助10
11秒前
Akim应助冷傲雨寒采纳,获得10
12秒前
田様应助李明涵采纳,获得10
12秒前
VISSUA完成签到,获得积分10
13秒前
麦子发布了新的文献求助10
14秒前
追寻念云完成签到 ,获得积分10
15秒前
WSGQT发布了新的文献求助10
15秒前
16秒前
sinn17完成签到,获得积分10
16秒前
科研通AI2S应助VISSUA采纳,获得10
18秒前
所所应助聪聪采纳,获得10
18秒前
实验室第一巴图鲁完成签到,获得积分10
20秒前
20秒前
桐桐应助曦梦源采纳,获得10
20秒前
宋晴应助lq采纳,获得10
21秒前
JamesPei应助Logan采纳,获得10
21秒前
赵坤煊发布了新的文献求助20
21秒前
阿连发布了新的文献求助10
22秒前
伶俐碧萱完成签到 ,获得积分10
22秒前
小李在哪儿完成签到 ,获得积分10
23秒前
城南完成签到 ,获得积分10
25秒前
烟花应助q792309106采纳,获得30
27秒前
鸣笛应助青云采纳,获得30
27秒前
28秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629