基因复制
生物
基因
拟南芥
基因家族
系统发育树
串联外显子复制
遗传学
拟南芥
水稻
节段重复
热休克蛋白
基因组
基因表达
突变体
作者
Xiao-Dong Lian,Qiuping A. Wang,Tianhao Li,Hongzhu Gao,Huannan Li,Xianbo Zheng,Xiaobei Wang,Haipeng Zhang,Jun Cheng,Wei Wang,Xia Ye,Jidong Li,Bin Tan,Jiancan Feng
标识
DOI:10.3390/ijms231810849
摘要
The heat shock protein 20 (HSP20) proteins comprise an ancient, diverse, and crucial family of proteins that exists in all organisms. As a family, the HSP20s play an obvious role in thermotolerance, but little is known about their molecular functions in addition to heat acclimation. In this study, 42 PpHSP20 genes were detected in the peach genome and were randomly distributed onto the eight chromosomes. The primary modes of gene duplication of the PpHSP20s were dispersed gene duplication (DSD) and tandem duplication (TD). PpHSP20s in the same class shared similar motifs. Based on phylogenetic analysis of HSP20s in peach, Arabidopsis thaliana, Glycine max, and Oryza sativa, the PpHSP20s were classified into 11 subclasses, except for two unclassified PpHSP20s. cis-elements related to stress and hormone responses were detected in the promoter regions of most PpHSP20s. Gene expression analysis of 42 PpHSP20 genes revealed that the expression pattern of PpHSP20-32 was highly consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’, which is a temperature-sensitive semi-dwarf. PpHSP20-32 was selected for further functional analysis. The plant heights of three transgenic Arabidopsis lines overexpressing PpHSP20-32 were significantly higher than WT, although there was no significant difference in the number of nodes. In addition, the seeds of three over-expressing lines of PpHSP20-32 treated with high temperature showed enhanced thermotolerance. These results provide a foundation for the functional characterization of PpHSP20 genes and their potential use in the growth and development of peach.
科研通智能强力驱动
Strongly Powered by AbleSci AI