Make chatbots more adaptive: Dual pathways linking human-like cues and tailored response to trust in interactions with chatbots

聊天机器人 对偶(语法数字) 心理学 人机交互 计算机科学 双重角色 认知心理学 认知科学 人工智能 化学 组合化学 文学类 艺术
作者
Yi Jiang,Xiangcheng Yang,Tianqi Zheng
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:138: 107485-107485 被引量:50
标识
DOI:10.1016/j.chb.2022.107485
摘要

As one of the most popular AI applications, chatbots are creating new ways and value for businesses to interact with their customers, and their adoption and continued use will depend on users’ trust. However, due to the non-transparent of AI-related technology and the ambiguity of application boundaries, it is difficult to determine which aspects enhance the adaptation of chatbots and how they interactively affect human trust. Based on the theory of task-technology fit, we developed a research model to investigate how two conversational cues of chatbots, human-like cues and tailored responses, influence human trust toward chatbots and to explore appropriate boundary conditions (individual characteristics and task characteristics) in interacting with chatbots. One survey and two experiments were performed to test the research model, and the results indicated that (1) perceived task solving competence and social presence mediate the pathway from conversational cues to human trust, which was validated in the context of e-commerce and education; (2) the extent of users’ ambiguity tolerance moderates the effects of two conversational cues on social presence; and (3) when performing high-creative tasks, the human-like chatbot induces higher perceived task solving competence. Our findings not only contribute to the AI trust-related literature but also provide practical implications for the development of chatbots and their assignment to individuals and tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
orixero应助自己采纳,获得10
2秒前
gxpjzbg完成签到,获得积分10
2秒前
一起看海嘛完成签到,获得积分10
2秒前
小满完成签到,获得积分10
2秒前
我是老大应助战场原荡漾采纳,获得10
2秒前
小羊苏西完成签到,获得积分20
2秒前
2秒前
3秒前
研友_VZG7GZ应助标致贞采纳,获得10
5秒前
搜集达人应助MARK采纳,获得10
5秒前
5秒前
华仔应助耍酷蛋挞采纳,获得10
5秒前
Lin发布了新的文献求助10
6秒前
伍仨仨发布了新的文献求助10
6秒前
怠惰vs勤劳完成签到,获得积分10
6秒前
JamesPei应助Wrr采纳,获得10
7秒前
8秒前
8秒前
小赞完成签到,获得积分10
8秒前
瑞_发布了新的文献求助40
8秒前
8秒前
饱满小兔子完成签到,获得积分10
8秒前
GX发布了新的文献求助10
9秒前
传奇3应助nj采纳,获得10
9秒前
缥缈的一斩完成签到,获得积分10
9秒前
生活的高手完成签到,获得积分10
9秒前
CXJ完成签到,获得积分10
9秒前
养护决策完成签到,获得积分10
10秒前
舒适不平完成签到,获得积分10
10秒前
多多发布了新的文献求助10
10秒前
不做卑微人完成签到,获得积分10
11秒前
可期完成签到,获得积分10
12秒前
顺顺完成签到,获得积分10
13秒前
13秒前
小猪佩奇完成签到,获得积分10
13秒前
wanci应助ilzhuzhu采纳,获得10
13秒前
迪迦发布了新的文献求助30
13秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217251
求助须知:如何正确求助?哪些是违规求助? 2866489
关于积分的说明 8151913
捐赠科研通 2533143
什么是DOI,文献DOI怎么找? 1366092
科研通“疑难数据库(出版商)”最低求助积分说明 644672
邀请新用户注册赠送积分活动 617642