Learning experience assessment through players chat content in multiplayer online games

形成性评价 计算机科学 多媒体 领域(数学) 人机交互 心理学 数学教育 数学 纯数学
作者
Mohammad Mahdi Rezapour,Afsaneh Fatemi,Mohammad Ali Nematbakhsh
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:151: 108003-108003
标识
DOI:10.1016/j.chb.2023.108003
摘要

Assessing players’ learning experiences in a proper manner is a fundamental aspect of successful game-based learning programs. One notable characteristic of these programs is stealth assessment, which involves integrating formative assessment into the learning environment without disrupting the learning process. In multiplayer online games (MOGs), the in-game online chat system is a commonly used tool that enables players to communicate through text or voice messages during gameplay. However, there is a lack of specific research on incorporating players’ in-game chat content for computational learning experience assessment, which could enhance the validity of stealth assessment. This study proposes a stealth assessment method based on natural language processing to highlight the significance of players’ in-game chat data in estimating learners’ skills in MOGs. A natural language processing model is developed using a distilled version of the Google BERT pre-trained model. The evaluations demonstrate that the proposed method accurately estimates a player’s skill level by analyzing a few chat messages from the player. This method has the potential to make a profound impact on the field of game-based learning by enabling more precise assessment and supporting the design of tailored interventions and adaptive learning systems. This study pioneers computational skill assessment through chats in MOGs, opening up new opportunities for future investigations in skill assessment and having the potential to transform the field of game-based learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极完成签到,获得积分10
刚刚
2秒前
Lareina完成签到,获得积分20
2秒前
4秒前
Lucas应助不和可乐采纳,获得10
5秒前
5秒前
carbonhan发布了新的文献求助10
5秒前
大橘发布了新的文献求助10
6秒前
许宗菊发布了新的文献求助10
8秒前
8秒前
cherry完成签到,获得积分20
8秒前
s0x0y0发布了新的文献求助10
11秒前
木子完成签到 ,获得积分10
12秒前
学术小垃圾完成签到,获得积分10
13秒前
青鸟飞鱼完成签到,获得积分10
14秒前
14秒前
博士加油完成签到,获得积分10
16秒前
单于世立完成签到,获得积分10
16秒前
17秒前
Jasper应助z_rainbow采纳,获得10
17秒前
大橘完成签到,获得积分20
17秒前
土豆丝完成签到,获得积分10
18秒前
tender完成签到,获得积分10
19秒前
大有阳光应助PANSIXUAN采纳,获得20
20秒前
21秒前
27秒前
无私千风完成签到 ,获得积分10
27秒前
爆米花完成签到,获得积分10
28秒前
SS小天使发布了新的文献求助20
29秒前
s0x0y0发布了新的文献求助10
29秒前
32秒前
33秒前
39秒前
无花果应助s0x0y0采纳,获得10
41秒前
五小完成签到 ,获得积分20
42秒前
高兴荔枝发布了新的文献求助10
42秒前
pgg完成签到,获得积分20
43秒前
xiaobei完成签到,获得积分10
43秒前
qujunming完成签到 ,获得积分10
44秒前
研友_8Y26PL发布了新的文献求助10
45秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155762
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871439
捐赠科研通 2465303
什么是DOI,文献DOI怎么找? 1312209
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905