Boosting Physical Layer Black-Box Attacks with Semantic Adversaries in Semantic Communications

计算机科学 物理层 黑匣子 语义安全 语义学(计算机科学) Boosting(机器学习) 编码器 语义计算 光学(聚焦) 图层(电子) 语义数据模型 无线 人工智能 计算机网络 语义网 电信 公钥密码术 加密 光学 程序设计语言 基于属性的加密 物理 化学 有机化学 操作系统
作者
Zeju Li,Xinghan Liu,Guoshun Nan,Jinfei Zhou,Xinchen Lyu,Qimei Cui,Xiaofeng Tao
标识
DOI:10.1109/icc45041.2023.10278790
摘要

End-to-end semantic communication (ESC) system is able to improve communication efficiency by only transmitting the semantics of the input rather than raw bits. Although promising, ESC has also been shown susceptible to the crafted physical layer adversarial perturbations due to the openness of wireless channels and the sensitivity of neural models. Previous works focus more on the physical layer white-box attacks, while the challenging black-box ones, as more practical adversaries in real-world cases, are still largely under-explored. To this end, we present SemBLK, a novel method that can learn to generate destructive physical layer semantic attacks for an ESC system under the black-box setting, where the adversaries are imperceptible to humans. Specifically, 1) we first introduce a surrogate semantic encoder and train its parameters by exploring a limited number of queries to an existing ESC system. 2) Equipped with such a surrogate encoder, we then propose a novel semantic perturbation generation method to learn to boost the physical layer attacks with semantic adversaries. Experiments on two public datasets show the effectiveness of our proposed SemBLK in attacking the ESC system under the black-box setting. Finally, we provide case studies to visually justify the superiority of our physical layer semantic perturbations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向上的小v完成签到 ,获得积分10
1秒前
1秒前
3秒前
酷酷紫蓝完成签到 ,获得积分10
3秒前
3秒前
方勇飞完成签到,获得积分10
3秒前
LYZ完成签到,获得积分10
3秒前
黄景滨完成签到 ,获得积分20
4秒前
4秒前
123456完成签到,获得积分20
4秒前
hkl1542完成签到,获得积分10
5秒前
5秒前
caohuijun发布了新的文献求助10
6秒前
杳鸢应助韦颖采纳,获得20
7秒前
7秒前
wshwx完成签到 ,获得积分10
7秒前
7秒前
魏伯安发布了新的文献求助10
8秒前
8秒前
传奇3应助daniel采纳,获得10
8秒前
ding应助帅气的听莲采纳,获得10
8秒前
sunshine完成签到,获得积分10
9秒前
大方嵩发布了新的文献求助10
9秒前
SciGPT应助tianny采纳,获得10
9秒前
skier发布了新的文献求助10
10秒前
HHHWJ完成签到 ,获得积分10
10秒前
敏感的芷发布了新的文献求助10
10秒前
怡然剑成关注了科研通微信公众号
10秒前
共享精神应助zhouleibio采纳,获得10
10秒前
贤惠的早晨完成签到 ,获得积分10
11秒前
六月毕业发布了新的文献求助10
11秒前
科研通AI5应助平常的毛豆采纳,获得10
11秒前
韦颖完成签到,获得积分20
13秒前
沉默的冬寒完成签到 ,获得积分10
14秒前
海科科给海科科的求助进行了留言
14秒前
迅速斑马完成签到,获得积分10
14秒前
百合完成签到 ,获得积分10
14秒前
wanghua完成签到,获得积分10
14秒前
Hello应助13679165979采纳,获得10
15秒前
ni发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824