Multiscale Structural Engineering of a Multilayered Nanoarray Electrode Realizing Boosted and Sustained Oxygen Evolution Catalysis in Seawater Electrolysis

析氧 材料科学 化学工程 腐蚀 纳米片 无定形固体 分解水 阳极 纳米技术 电极 催化作用 电化学 冶金 化学 生物化学 光催化 工程类 物理化学 有机化学
作者
Ping Li,Shien Zhao,Yuqi Huang,Quhua Huang,Yuting Yang,Han Yang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:13 (23): 15360-15374 被引量:62
标识
DOI:10.1021/acscatal.3c03573
摘要

Seawater electrolysis is promising for large-scale H2 production, yet it is bottlenecked by the lack of a high-performing anode with favorable activity, desirable selectivity toward the oxygen evolution reaction (OER), and strong resistance against chloride corrosion. Herein, we propose a multiscale structural engineering strategy to construct a multilayered heterostructured OER electrode with an amorphous FeOOH overlayer coated on the crystalline Mo-doped Co0.85Se nanosheet array aligned on 3D macroporous Ni foam. In such designed NF/(CoMo)0.85Se@FeOOH electrode, the integration of aliovalent Mo-doped conductive Co0.85Se with active yet nonconductive FeOOH into a crystalline–amorphous heterostructure, with a unique hierarchical sheet-on-sheet nanoarray configuration, can not only give rise to proliferated catalytic sites with enhanced intrinsic activity via electronic manipulation but also boost mass transfer on account of fascinating surface superhydrophilic and superaerophobic features. Impressively, the multilayered architecture comprising inherently anticorrosive (CoMo)0.85Se core and FeOOH shell, together with an in situ formed transition metal (oxy)hydroxide outmost layer enriched with polyatomic anions (MoOxn– and SeOxn–), can collectively contribute to commendable mechanical stability and chloride-corrosion resistance during harsh seawater oxidation. This work highlights a potent paradigm to construct a high-efficiency, corrosion-resistive, and OER-selective anode toward stable seawater electrolysis via ingenious systematical structural engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浮游应助djbj2022采纳,获得10
2秒前
6秒前
优秀笑柳完成签到,获得积分10
6秒前
丘比特应助trussie采纳,获得10
6秒前
Cherish完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
Owen应助马上飞上宇宙采纳,获得10
8秒前
善学以致用应助jc采纳,获得10
8秒前
10秒前
划分完成签到,获得积分10
10秒前
111发布了新的文献求助10
11秒前
fanfan完成签到,获得积分10
12秒前
周久完成签到 ,获得积分10
12秒前
ada发布了新的文献求助10
13秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
14秒前
彭tiantian完成签到 ,获得积分10
14秒前
16秒前
lucy发布了新的文献求助10
16秒前
18秒前
爱放屁的马邦德完成签到,获得积分10
18秒前
simdows发布了新的文献求助10
19秒前
Rain完成签到,获得积分10
20秒前
21秒前
lzcccccc完成签到,获得积分10
22秒前
ljc完成签到 ,获得积分10
23秒前
24秒前
科研通AI6应助纸箱采纳,获得10
25秒前
25秒前
original完成签到,获得积分10
26秒前
一向年光无限身完成签到,获得积分10
26秒前
浮游应助大李不说话采纳,获得10
28秒前
29秒前
日出完成签到,获得积分10
30秒前
Twonej举报lilianan求助涉嫌违规
31秒前
31秒前
七星茶发布了新的文献求助10
32秒前
无花果应助Wells采纳,获得10
34秒前
上官若男应助Wells采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741