MIFI: Combining Multi-Interest Activation and Implicit Feature Interaction for CTR Predictions

特征(语言学) 计算机科学 人工智能 哲学 语言学
作者
Jungang Lou,Rongzhen Qin,Qing Shen,C.K. Sha
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2889-2900 被引量:1
标识
DOI:10.1109/tcss.2023.3313622
摘要

A common paradigm is followed by several current click-through rate (CTR) prediction models based on user behavior sequences. They first apply embedding technology to map users' past behavior to low-dimensional dense vectors and then utilize an attention technique to acquire user interest representation from behavior sequences, using current candidates as queries. However, these approaches overemphasize the role of items similar to the candidate items in the historical sequence and ignore the learning of other contextual features as well as the sequential behavior patterns of users. In this article, we present a deep click-through prediction model that incorporates a multigranularity interest activation and implicit feature interactions. Our model first incorporates the nonlinearly extended user representation in the user behavior sequence and uses multiple fully connected layers to obtain the global user interest representation, thereby improving the model's memorization ability for users. Then, a multikernel convolutional network is employed to learn the behavior patterns of the user with different window sizes to solve the problem of pattern diversity and interest mutation noise in behavioral sequences. Finally, the model implements implicit second-order feature interactions across the user-side, item-side, and contextual features via a multihead self-attention network, which can maintain the model's performance in the presence of scarce user behavior sequences. Compared with the benchmark model, deep interest network (DIN), our model achieved RelaImpr gains of 1.67%, 3.36%, and 3.04% on three publicly available datasets and 6.09%, 6.08%, and 10.22% with the elimination of user history behavior sequence information. Experiments and discussions on module ablation and parameters that have a significant impact on model performance are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小胖次完成签到,获得积分10
1秒前
2秒前
Hello应助淡然扬采纳,获得10
3秒前
蔡秋景发布了新的文献求助30
3秒前
燕尔蓝完成签到,获得积分10
3秒前
哎哟很烦完成签到,获得积分10
3秒前
4秒前
华仔应助buxiangduwenxian采纳,获得10
4秒前
李爱国应助斯奈克采纳,获得10
5秒前
steins完成签到,获得积分10
5秒前
5秒前
在水一方应助ecnu搬砖人采纳,获得30
6秒前
王小能完成签到,获得积分10
6秒前
6秒前
HDrinnk完成签到,获得积分20
6秒前
星辰大海应助YYL采纳,获得10
7秒前
郭小胖14发布了新的文献求助10
7秒前
彩色青亦完成签到,获得积分10
7秒前
7秒前
大模型应助飘飘采纳,获得10
7秒前
阿达完成签到 ,获得积分10
8秒前
留胡子的凌青完成签到,获得积分10
8秒前
天天快乐应助βlühend采纳,获得10
8秒前
于跃完成签到,获得积分10
8秒前
图图完成签到 ,获得积分10
9秒前
10秒前
zzx发布了新的文献求助10
10秒前
11秒前
11秒前
彩色青亦发布了新的文献求助10
12秒前
爱听歌的冷安完成签到 ,获得积分10
12秒前
公孙朝雨完成签到 ,获得积分10
13秒前
corazon完成签到,获得积分10
13秒前
小鱼爱吃肉应助科研小狗采纳,获得10
13秒前
14秒前
mito发布了新的文献求助10
14秒前
Polymer72应助科研通管家采纳,获得10
14秒前
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
15秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344653
求助须知:如何正确求助?哪些是违规求助? 2971500
关于积分的说明 8649496
捐赠科研通 2651732
什么是DOI,文献DOI怎么找? 1452073
科研通“疑难数据库(出版商)”最低求助积分说明 672372
邀请新用户注册赠送积分活动 661910