MIFI: Combining Multi-Interest Activation and Implicit Feature Interaction for CTR Predictions

特征(语言学) 计算机科学 人工智能 哲学 语言学
作者
Jungang Lou,Rongzhen Qin,Qing Shen,C.K. Sha
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2889-2900 被引量:1
标识
DOI:10.1109/tcss.2023.3313622
摘要

A common paradigm is followed by several current click-through rate (CTR) prediction models based on user behavior sequences. They first apply embedding technology to map users' past behavior to low-dimensional dense vectors and then utilize an attention technique to acquire user interest representation from behavior sequences, using current candidates as queries. However, these approaches overemphasize the role of items similar to the candidate items in the historical sequence and ignore the learning of other contextual features as well as the sequential behavior patterns of users. In this article, we present a deep click-through prediction model that incorporates a multigranularity interest activation and implicit feature interactions. Our model first incorporates the nonlinearly extended user representation in the user behavior sequence and uses multiple fully connected layers to obtain the global user interest representation, thereby improving the model's memorization ability for users. Then, a multikernel convolutional network is employed to learn the behavior patterns of the user with different window sizes to solve the problem of pattern diversity and interest mutation noise in behavioral sequences. Finally, the model implements implicit second-order feature interactions across the user-side, item-side, and contextual features via a multihead self-attention network, which can maintain the model's performance in the presence of scarce user behavior sequences. Compared with the benchmark model, deep interest network (DIN), our model achieved RelaImpr gains of 1.67%, 3.36%, and 3.04% on three publicly available datasets and 6.09%, 6.08%, and 10.22% with the elimination of user history behavior sequence information. Experiments and discussions on module ablation and parameters that have a significant impact on model performance are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助挽倾颜采纳,获得10
刚刚
徐阳发布了新的文献求助10
刚刚
centlay发布了新的文献求助10
1秒前
1秒前
杨枝甘露发布了新的文献求助10
1秒前
1秒前
魏开铭完成签到,获得积分10
1秒前
2秒前
科研通AI6应助心灵美飞莲采纳,获得10
2秒前
超级的幻然完成签到,获得积分10
2秒前
3秒前
3秒前
小二郎应助achris采纳,获得10
3秒前
完美山菡完成签到,获得积分10
3秒前
3秒前
机智初夏发布了新的文献求助10
4秒前
迎风映雪完成签到 ,获得积分10
4秒前
个性太英完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
ding应助aaa采纳,获得10
5秒前
千寻发布了新的文献求助10
5秒前
bbbbuuuoo完成签到,获得积分20
6秒前
脑洞疼应助朝槿采纳,获得10
6秒前
6秒前
6秒前
顺利毕业完成签到,获得积分10
6秒前
111发布了新的文献求助10
7秒前
勤恳碧蓉发布了新的文献求助10
8秒前
李健的粉丝团团长应助yao采纳,获得30
8秒前
8秒前
HCXsir完成签到,获得积分10
8秒前
8秒前
9秒前
Owen应助看起来不太强采纳,获得10
9秒前
星星发布了新的文献求助10
9秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238122
求助须知:如何正确求助?哪些是违规求助? 4405802
关于积分的说明 13711768
捐赠科研通 4274090
什么是DOI,文献DOI怎么找? 2345419
邀请新用户注册赠送积分活动 1342496
关于科研通互助平台的介绍 1300416