MIFI: Combining Multi-Interest Activation and Implicit Feature Interaction for CTR Predictions

特征(语言学) 计算机科学 人工智能 语言学 哲学
作者
Jungang Lou,Rongzhen Qin,Qing Shen,C.K. Sha
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2889-2900 被引量:1
标识
DOI:10.1109/tcss.2023.3313622
摘要

A common paradigm is followed by several current click-through rate (CTR) prediction models based on user behavior sequences. They first apply embedding technology to map users' past behavior to low-dimensional dense vectors and then utilize an attention technique to acquire user interest representation from behavior sequences, using current candidates as queries. However, these approaches overemphasize the role of items similar to the candidate items in the historical sequence and ignore the learning of other contextual features as well as the sequential behavior patterns of users. In this article, we present a deep click-through prediction model that incorporates a multigranularity interest activation and implicit feature interactions. Our model first incorporates the nonlinearly extended user representation in the user behavior sequence and uses multiple fully connected layers to obtain the global user interest representation, thereby improving the model's memorization ability for users. Then, a multikernel convolutional network is employed to learn the behavior patterns of the user with different window sizes to solve the problem of pattern diversity and interest mutation noise in behavioral sequences. Finally, the model implements implicit second-order feature interactions across the user-side, item-side, and contextual features via a multihead self-attention network, which can maintain the model's performance in the presence of scarce user behavior sequences. Compared with the benchmark model, deep interest network (DIN), our model achieved RelaImpr gains of 1.67%, 3.36%, and 3.04% on three publicly available datasets and 6.09%, 6.08%, and 10.22% with the elimination of user history behavior sequence information. Experiments and discussions on module ablation and parameters that have a significant impact on model performance are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
XY发布了新的文献求助10
1秒前
FashionBoy应助蹦蹦哒哒采纳,获得10
1秒前
铭心发布了新的文献求助10
2秒前
apple发布了新的文献求助10
3秒前
Teddyfeeder完成签到,获得积分10
4秒前
椒盐皮皮虾完成签到 ,获得积分10
5秒前
cdercder应助银杏采纳,获得10
5秒前
5秒前
5秒前
sheh完成签到,获得积分20
6秒前
7秒前
cocofan发布了新的文献求助10
8秒前
蒋50应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
王水苗完成签到,获得积分10
12秒前
天天快乐应助罗大壮采纳,获得10
12秒前
zzm完成签到,获得积分10
13秒前
居然是我完成签到,获得积分10
13秒前
啦啦啦啦啦完成签到,获得积分10
13秒前
张豪杰完成签到 ,获得积分10
14秒前
14秒前
14秒前
小羊完成签到 ,获得积分10
15秒前
崔雨旋完成签到,获得积分10
15秒前
丫丫完成签到,获得积分10
15秒前
domkps完成签到 ,获得积分10
17秒前
乌拉完成签到 ,获得积分10
17秒前
XY发布了新的文献求助10
18秒前
19秒前
19秒前
神勇友灵完成签到,获得积分10
20秒前
郭囯完成签到,获得积分10
20秒前
OnionJJ完成签到,获得积分10
21秒前
21秒前
铭心完成签到,获得积分10
22秒前
大个应助奶茶的后来采纳,获得10
22秒前
含蓄元冬完成签到 ,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736779
求助须知:如何正确求助?哪些是违规求助? 3280685
关于积分的说明 10020554
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668