MIFI: Combining Multi-Interest Activation and Implicit Feature Interaction for CTR Predictions

特征(语言学) 计算机科学 人工智能 语言学 哲学
作者
Jungang Lou,Rongzhen Qin,Qing Shen,C.K. Sha
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2889-2900 被引量:1
标识
DOI:10.1109/tcss.2023.3313622
摘要

A common paradigm is followed by several current click-through rate (CTR) prediction models based on user behavior sequences. They first apply embedding technology to map users' past behavior to low-dimensional dense vectors and then utilize an attention technique to acquire user interest representation from behavior sequences, using current candidates as queries. However, these approaches overemphasize the role of items similar to the candidate items in the historical sequence and ignore the learning of other contextual features as well as the sequential behavior patterns of users. In this article, we present a deep click-through prediction model that incorporates a multigranularity interest activation and implicit feature interactions. Our model first incorporates the nonlinearly extended user representation in the user behavior sequence and uses multiple fully connected layers to obtain the global user interest representation, thereby improving the model's memorization ability for users. Then, a multikernel convolutional network is employed to learn the behavior patterns of the user with different window sizes to solve the problem of pattern diversity and interest mutation noise in behavioral sequences. Finally, the model implements implicit second-order feature interactions across the user-side, item-side, and contextual features via a multihead self-attention network, which can maintain the model's performance in the presence of scarce user behavior sequences. Compared with the benchmark model, deep interest network (DIN), our model achieved RelaImpr gains of 1.67%, 3.36%, and 3.04% on three publicly available datasets and 6.09%, 6.08%, and 10.22% with the elimination of user history behavior sequence information. Experiments and discussions on module ablation and parameters that have a significant impact on model performance are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助孙传铭采纳,获得10
1秒前
夏侯初完成签到,获得积分10
1秒前
SciGPT应助Binbin采纳,获得10
1秒前
2秒前
later完成签到,获得积分20
2秒前
科研通AI5应助冷傲迎梦采纳,获得10
3秒前
WLM完成签到,获得积分10
3秒前
mermaid完成签到,获得积分10
3秒前
SciGPT应助MignonWei采纳,获得10
3秒前
陈美净发布了新的文献求助10
4秒前
4秒前
木昜发布了新的文献求助10
5秒前
欣欣子发布了新的文献求助10
5秒前
6秒前
李爱国应助马子妍采纳,获得10
7秒前
Owen应助niuma采纳,获得10
7秒前
缓慢咖啡发布了新的文献求助10
8秒前
cdercder应助sssucker采纳,获得10
8秒前
热心的飞风完成签到 ,获得积分10
9秒前
RJ123456发布了新的文献求助10
10秒前
聪聪great发布了新的文献求助10
10秒前
10秒前
11秒前
陈美净完成签到,获得积分10
12秒前
12秒前
科研通AI5应助嘎嘎板正采纳,获得10
13秒前
小月月完成签到,获得积分10
13秒前
山河发布了新的文献求助10
15秒前
16秒前
科研通AI5应助ZRH采纳,获得10
16秒前
Binbin发布了新的文献求助10
17秒前
JamesPei应助阿九采纳,获得10
17秒前
ZGH完成签到,获得积分10
18秒前
聪聪great完成签到,获得积分20
18秒前
18秒前
19秒前
19秒前
Xie完成签到,获得积分10
20秒前
user001完成签到,获得积分10
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842025
求助须知:如何正确求助?哪些是违规求助? 3384185
关于积分的说明 10533034
捐赠科研通 3104519
什么是DOI,文献DOI怎么找? 1709644
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953