MIFI: Combining Multi-Interest Activation and Implicit Feature Interaction for CTR Predictions

特征(语言学) 计算机科学 人工智能 语言学 哲学
作者
Jungang Lou,Rongzhen Qin,Qing Shen,C.K. Sha
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 2889-2900 被引量:1
标识
DOI:10.1109/tcss.2023.3313622
摘要

A common paradigm is followed by several current click-through rate (CTR) prediction models based on user behavior sequences. They first apply embedding technology to map users' past behavior to low-dimensional dense vectors and then utilize an attention technique to acquire user interest representation from behavior sequences, using current candidates as queries. However, these approaches overemphasize the role of items similar to the candidate items in the historical sequence and ignore the learning of other contextual features as well as the sequential behavior patterns of users. In this article, we present a deep click-through prediction model that incorporates a multigranularity interest activation and implicit feature interactions. Our model first incorporates the nonlinearly extended user representation in the user behavior sequence and uses multiple fully connected layers to obtain the global user interest representation, thereby improving the model's memorization ability for users. Then, a multikernel convolutional network is employed to learn the behavior patterns of the user with different window sizes to solve the problem of pattern diversity and interest mutation noise in behavioral sequences. Finally, the model implements implicit second-order feature interactions across the user-side, item-side, and contextual features via a multihead self-attention network, which can maintain the model's performance in the presence of scarce user behavior sequences. Compared with the benchmark model, deep interest network (DIN), our model achieved RelaImpr gains of 1.67%, 3.36%, and 3.04% on three publicly available datasets and 6.09%, 6.08%, and 10.22% with the elimination of user history behavior sequence information. Experiments and discussions on module ablation and parameters that have a significant impact on model performance are also presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
原点完成签到,获得积分10
刚刚
1秒前
小政发布了新的文献求助10
1秒前
2秒前
纯真忆秋发布了新的文献求助10
2秒前
daijk发布了新的文献求助10
3秒前
3秒前
3秒前
酷波er应助songyl采纳,获得10
3秒前
cdercder发布了新的文献求助10
3秒前
幽默的山雁完成签到,获得积分10
3秒前
4秒前
小徐801完成签到,获得积分10
4秒前
试尝胆大应助Sunrise采纳,获得10
5秒前
艺心完成签到,获得积分10
5秒前
5秒前
快乐水完成签到,获得积分10
6秒前
呵呵发布了新的文献求助10
6秒前
kong发布了新的文献求助10
6秒前
6秒前
江月渡发布了新的文献求助10
7秒前
犹豫野狼完成签到 ,获得积分10
7秒前
结实的幽魂完成签到,获得积分10
7秒前
7秒前
8秒前
ddsyg126完成签到,获得积分10
8秒前
大个应助哒哒猪采纳,获得50
8秒前
stars完成签到,获得积分10
8秒前
8秒前
liufumei完成签到,获得积分10
9秒前
试尝胆大应助文龙采纳,获得10
9秒前
852应助踏实十八采纳,获得30
10秒前
合适怡完成签到,获得积分10
10秒前
魏漂亮完成签到,获得积分10
10秒前
可爱的函函应助欢喜藏今采纳,获得10
10秒前
希望天下0贩的0应助Mine采纳,获得10
10秒前
10秒前
鸭鸭完成签到,获得积分10
10秒前
没有神的过往完成签到,获得积分10
11秒前
白_发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950365
求助须知:如何正确求助?哪些是违规求助? 3495846
关于积分的说明 11078987
捐赠科研通 3226245
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800926