Unleashing wastewater heat Recovery's potential in smart building systems: Grey wolf-assisted optimization aided by artificial neural networks

TRNSYS公司 人工神经网络 北京 工艺工程 高效能源利用 过程(计算) 工程类 按来源划分的电力成本 计算机科学 能量(信号处理) 人工智能 发电 功率(物理) 统计 物理 数学 电气工程 量子力学 法学 政治学 中国 操作系统
作者
Guangnan Zhang,Hai Tao,Premlata Singh,Torki Altameem,Walid El‐Shafai
出处
期刊:Energy [Elsevier]
卷期号:285: 129307-129307
标识
DOI:10.1016/j.energy.2023.129307
摘要

This article presents an innovative and efficient way to address residential dwellings' substantial heating needs. The primary objective is to utilize the heat from wastewater to enhance energy efficiency through a control framework based on predetermined rules. This framework aims to increase the incoming air temperature at the air handling unit. A thorough evaluation is carried out to analyze all aspects of the proposed system compared to an identical system that does not incorporate the wastewater heat recovery process. The practicality of the concept is assessed for a residential building located in Beijing, China, employing the TRNSYS software. The most optimal operating condition is achieved via the grey wolf optimizer and TOPSIS decision-making approach equipped with the artificial neural network using MATLAB. Then, the proposed system's performance under optimal conditions is compared with similar works in the literature. According to the results, compared to the conventional system, a higher performance efficiency of 6 % and lower levelized cost of heating of 15.6 $/MWh is obtained by implementing the wastewater heat recovery process. The parametric study results also demonstrate a conflicting change in techno-economic and environmental indicators when altering the primary decision variables, highlighting the necessity for multi-criteria optimization. What stands out from the optimization outcomes is that the grey wolf method increases the efficiency and CO2 saving by around 5.2 and 531.2 kg/year while reducing the levelized cost of heating by about 13.6 $/MWh, respectively. The optimization results reveal that this condition is attained by raising the heat exchanger's effectiveness and the number of residences and decreasing the wastewater temperature. According to the scatter distribution of key parameters, the energy wheel effectiveness has low sensitivity, and the optimal points of tank volume are distributed within the range of 3 m3 and 4 m3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪发布了新的文献求助10
2秒前
2秒前
2秒前
粗犷的沛容应助vvvvv采纳,获得10
2秒前
凯特发布了新的文献求助10
3秒前
科目三应助酷酷妙梦采纳,获得10
3秒前
xxy发布了新的文献求助10
3秒前
lyz666发布了新的文献求助10
4秒前
Rocky完成签到 ,获得积分10
4秒前
一一应助通关采纳,获得10
6秒前
7秒前
周而复始发布了新的文献求助10
7秒前
萧白竹发布了新的文献求助10
7秒前
不配.给wang的求助进行了留言
7秒前
7秒前
而发的发布了新的文献求助10
8秒前
酸菜完成签到,获得积分10
8秒前
9秒前
落梦发布了新的文献求助10
9秒前
10秒前
酸菜发布了新的文献求助10
11秒前
cleva发布了新的文献求助10
11秒前
11秒前
12秒前
苞大米发布了新的文献求助10
12秒前
14秒前
Orange应助大大怪采纳,获得10
15秒前
sustwanli完成签到,获得积分10
15秒前
16秒前
16秒前
净净子完成签到,获得积分10
16秒前
爆米花应助hehehe采纳,获得10
16秒前
华仔应助凯特采纳,获得10
17秒前
盛清让发布了新的文献求助10
17秒前
18秒前
19秒前
而发的完成签到,获得积分10
19秒前
琳琳给琳琳的求助进行了留言
19秒前
19秒前
20秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217943
求助须知:如何正确求助?哪些是违规求助? 2867189
关于积分的说明 8155138
捐赠科研通 2533994
什么是DOI,文献DOI怎么找? 1366730
科研通“疑难数据库(出版商)”最低求助积分说明 644865
邀请新用户注册赠送积分活动 617845