Unleashing wastewater heat Recovery's potential in smart building systems: Grey wolf-assisted optimization aided by artificial neural networks

TRNSYS公司 人工神经网络 北京 工艺工程 高效能源利用 过程(计算) 工程类 按来源划分的电力成本 计算机科学 能量(信号处理) 人工智能 发电 电气工程 物理 操作系统 统计 功率(物理) 量子力学 中国 法学 政治学 数学
作者
Guangnan Zhang,Hai Tao,Premlata Singh,Torki Altameem,Walid El‐Shafai
出处
期刊:Energy [Elsevier BV]
卷期号:285: 129307-129307
标识
DOI:10.1016/j.energy.2023.129307
摘要

This article presents an innovative and efficient way to address residential dwellings' substantial heating needs. The primary objective is to utilize the heat from wastewater to enhance energy efficiency through a control framework based on predetermined rules. This framework aims to increase the incoming air temperature at the air handling unit. A thorough evaluation is carried out to analyze all aspects of the proposed system compared to an identical system that does not incorporate the wastewater heat recovery process. The practicality of the concept is assessed for a residential building located in Beijing, China, employing the TRNSYS software. The most optimal operating condition is achieved via the grey wolf optimizer and TOPSIS decision-making approach equipped with the artificial neural network using MATLAB. Then, the proposed system's performance under optimal conditions is compared with similar works in the literature. According to the results, compared to the conventional system, a higher performance efficiency of 6 % and lower levelized cost of heating of 15.6 $/MWh is obtained by implementing the wastewater heat recovery process. The parametric study results also demonstrate a conflicting change in techno-economic and environmental indicators when altering the primary decision variables, highlighting the necessity for multi-criteria optimization. What stands out from the optimization outcomes is that the grey wolf method increases the efficiency and CO2 saving by around 5.2 and 531.2 kg/year while reducing the levelized cost of heating by about 13.6 $/MWh, respectively. The optimization results reveal that this condition is attained by raising the heat exchanger's effectiveness and the number of residences and decreasing the wastewater temperature. According to the scatter distribution of key parameters, the energy wheel effectiveness has low sensitivity, and the optimal points of tank volume are distributed within the range of 3 m3 and 4 m3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助重要涔雨采纳,获得10
刚刚
2秒前
li发布了新的文献求助10
4秒前
坚强怀绿完成签到 ,获得积分10
4秒前
4秒前
科研小白完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
CXS发布了新的文献求助10
7秒前
苏silence发布了新的文献求助10
8秒前
NiKkKoO完成签到 ,获得积分10
8秒前
Yuhua_Lin完成签到,获得积分10
8秒前
69发布了新的文献求助10
9秒前
CodeCraft应助心灵美的修洁采纳,获得10
11秒前
12秒前
13秒前
zhanyuji发布了新的文献求助30
13秒前
科研通AI5应助李帅采纳,获得10
13秒前
liuyc发布了新的文献求助10
14秒前
bkagyin应助jialin采纳,获得10
15秒前
治神守气关注了科研通微信公众号
16秒前
17秒前
苏silence发布了新的文献求助10
17秒前
17秒前
pp发布了新的文献求助10
18秒前
英姑应助彼岸灯火阑珊采纳,获得30
18秒前
DD完成签到,获得积分10
18秒前
李爱国应助Koi采纳,获得10
18秒前
叫滚滚完成签到,获得积分10
19秒前
19秒前
19秒前
CodeCraft应助张家源采纳,获得10
20秒前
20秒前
万能图书馆应助叫滚滚采纳,获得10
23秒前
22222发布了新的文献求助10
23秒前
唐唐发布了新的文献求助10
24秒前
yly123发布了新的文献求助10
25秒前
懵懂的小夏完成签到 ,获得积分10
26秒前
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517