Unleashing wastewater heat Recovery's potential in smart building systems: Grey wolf-assisted optimization aided by artificial neural networks

TRNSYS公司 人工神经网络 北京 工艺工程 高效能源利用 过程(计算) 工程类 按来源划分的电力成本 计算机科学 能量(信号处理) 人工智能 发电 电气工程 物理 操作系统 统计 功率(物理) 量子力学 中国 法学 政治学 数学
作者
Guangnan Zhang,Hai Tao,Premlata Singh,Torki Altameem,Walid El‐Shafai
出处
期刊:Energy [Elsevier]
卷期号:285: 129307-129307
标识
DOI:10.1016/j.energy.2023.129307
摘要

This article presents an innovative and efficient way to address residential dwellings' substantial heating needs. The primary objective is to utilize the heat from wastewater to enhance energy efficiency through a control framework based on predetermined rules. This framework aims to increase the incoming air temperature at the air handling unit. A thorough evaluation is carried out to analyze all aspects of the proposed system compared to an identical system that does not incorporate the wastewater heat recovery process. The practicality of the concept is assessed for a residential building located in Beijing, China, employing the TRNSYS software. The most optimal operating condition is achieved via the grey wolf optimizer and TOPSIS decision-making approach equipped with the artificial neural network using MATLAB. Then, the proposed system's performance under optimal conditions is compared with similar works in the literature. According to the results, compared to the conventional system, a higher performance efficiency of 6 % and lower levelized cost of heating of 15.6 $/MWh is obtained by implementing the wastewater heat recovery process. The parametric study results also demonstrate a conflicting change in techno-economic and environmental indicators when altering the primary decision variables, highlighting the necessity for multi-criteria optimization. What stands out from the optimization outcomes is that the grey wolf method increases the efficiency and CO2 saving by around 5.2 and 531.2 kg/year while reducing the levelized cost of heating by about 13.6 $/MWh, respectively. The optimization results reveal that this condition is attained by raising the heat exchanger's effectiveness and the number of residences and decreasing the wastewater temperature. According to the scatter distribution of key parameters, the energy wheel effectiveness has low sensitivity, and the optimal points of tank volume are distributed within the range of 3 m3 and 4 m3.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI6.1应助Mcarry采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
清欢渡完成签到,获得积分10
5秒前
哈哈哈哈发布了新的文献求助10
6秒前
8秒前
8秒前
dingyn-2发布了新的文献求助10
9秒前
11秒前
鸿俦鹤侣完成签到,获得积分10
12秒前
12秒前
张雅露完成签到,获得积分10
13秒前
17秒前
17秒前
陈龙发布了新的文献求助10
18秒前
科研通AI6应助puss123采纳,获得10
19秒前
dingyn-2完成签到,获得积分10
21秒前
热带瑜完成签到 ,获得积分10
22秒前
蓝天应助房产中介采纳,获得10
22秒前
紫萱发布了新的文献求助10
23秒前
23秒前
coolkid应助小思怡采纳,获得10
23秒前
24秒前
科研通AI6.1应助hupx采纳,获得10
24秒前
zipzhang完成签到 ,获得积分10
24秒前
小小Li完成签到,获得积分10
25秒前
慕青应助RONG采纳,获得10
27秒前
搜集达人应助哈哈哈哈采纳,获得10
27秒前
qinqin发布了新的文献求助10
29秒前
29秒前
壮观沉鱼完成签到 ,获得积分10
30秒前
31秒前
YY完成签到,获得积分10
31秒前
英姑应助lalala采纳,获得10
32秒前
swimswim完成签到,获得积分10
32秒前
33秒前
星辰大海应助Baccano采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812