Machine learning-based spectral and spatial analysis of hyper- and multi-spectral leaf images for Dutch elm disease detection and resistance screening

人工智能 病理系统 荷兰榆树病 机器学习 深度学习 高光谱成像 计算机科学 特征(语言学) 模式识别(心理学) 生物 接种 遥感 园艺 地理 语言学 哲学
作者
Xing Wei,Jinnuo Zhang,Anna O. Conrad,Charles E. Flower,Cornelia C. Pinchot,Nancy Hayes‐Plazolles,Ziling Chen,Zhihang Song,Songlin Fei,Jian Xun Jin
出处
期刊:Artificial intelligence in agriculture [Elsevier]
卷期号:10: 26-34 被引量:2
标识
DOI:10.1016/j.aiia.2023.09.003
摘要

Diseases caused by invasive pathogens are an increasing threat to forest health, and early and accurate disease detection is essential for timely and precision forest management. The recent technological advancements in spectral imaging and artificial intelligence have opened up new possibilities for plant disease detection in both crops and trees. In this study, Dutch elm disease (DED; caused by Ophiostoma novo-ulmi,) and American elm (Ulmus americana) was used as example pathosystem to evaluate the accuracy of two in-house developed high-precision portable hyper- and multi-spectral leaf imagers combined with machine learning as new tools for forest disease detection. Hyper- and multi-spectral images were collected from leaves of American elm genotypes with varied disease susceptibilities after mock-inoculation and inoculation with O. novo-ulmi under greenhouse conditions. Both traditional machine learning and state-of-art deep learning models were built upon derived spectra and directly upon spectral image cubes. Deep learning models that incorporate both spectral and spatial features of high-resolution spectral leaf images have better performance than traditional machine learning models built upon spectral features alone in detecting DED. Edges and symptomatic spots on the leaves were highlighted in the deep learning model as important spatial features to distinguish leaves from inoculated and mock-inoculated trees. In addition, spectral and spatial feature patterns identified in the machine learning-based models were found relative to the DED susceptibility of elm genotypes. Though further studies are needed to assess applications in other pathosystems, hyper- and multi-spectral leaf imagers combined with machine learning show potential as new tools for disease phenotyping in trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助书生采纳,获得10
1秒前
科研钓鱼佬完成签到,获得积分10
2秒前
4秒前
petrichor应助C_Cppp采纳,获得10
4秒前
nan完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
勤恳的雨文完成签到,获得积分10
5秒前
木森ab发布了新的文献求助10
6秒前
paul完成签到,获得积分10
6秒前
小鞋完成签到,获得积分10
7秒前
开心青旋发布了新的文献求助10
7秒前
fztnh发布了新的文献求助10
7秒前
无名花生完成签到 ,获得积分10
7秒前
9秒前
10秒前
10秒前
杜若完成签到,获得积分10
10秒前
10秒前
木森ab完成签到,获得积分20
12秒前
paul发布了新的文献求助10
13秒前
14秒前
MEME发布了新的文献求助10
17秒前
17秒前
情怀应助LSH970829采纳,获得10
17秒前
CHINA_C13发布了新的文献求助10
20秒前
Mars发布了新的文献求助10
21秒前
哈哈哈完成签到,获得积分10
21秒前
玛卡巴卡应助平常的毛豆采纳,获得100
22秒前
默默的青旋完成签到,获得积分10
23秒前
26秒前
搜集达人应助淡淡采白采纳,获得10
26秒前
高高代珊完成签到 ,获得积分10
27秒前
gmc发布了新的文献求助10
28秒前
28秒前
29秒前
善学以致用应助Mian采纳,获得10
29秒前
学科共进发布了新的文献求助60
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824