Machine learning-based spectral and spatial analysis of hyper- and multi-spectral leaf images for Dutch elm disease detection and resistance screening

人工智能 病理系统 荷兰榆树病 机器学习 深度学习 高光谱成像 计算机科学 特征(语言学) 模式识别(心理学) 生物 接种 遥感 园艺 地理 语言学 哲学
作者
Xing Wei,Jinnuo Zhang,Anna O. Conrad,Charles E. Flower,Cornelia C. Pinchot,Nancy Hayes‐Plazolles,Ziling Chen,Zhihang Song,Songlin Fei,Jian Xun Jin
出处
期刊:Artificial intelligence in agriculture [Elsevier]
卷期号:10: 26-34 被引量:2
标识
DOI:10.1016/j.aiia.2023.09.003
摘要

Diseases caused by invasive pathogens are an increasing threat to forest health, and early and accurate disease detection is essential for timely and precision forest management. The recent technological advancements in spectral imaging and artificial intelligence have opened up new possibilities for plant disease detection in both crops and trees. In this study, Dutch elm disease (DED; caused by Ophiostoma novo-ulmi,) and American elm (Ulmus americana) was used as example pathosystem to evaluate the accuracy of two in-house developed high-precision portable hyper- and multi-spectral leaf imagers combined with machine learning as new tools for forest disease detection. Hyper- and multi-spectral images were collected from leaves of American elm genotypes with varied disease susceptibilities after mock-inoculation and inoculation with O. novo-ulmi under greenhouse conditions. Both traditional machine learning and state-of-art deep learning models were built upon derived spectra and directly upon spectral image cubes. Deep learning models that incorporate both spectral and spatial features of high-resolution spectral leaf images have better performance than traditional machine learning models built upon spectral features alone in detecting DED. Edges and symptomatic spots on the leaves were highlighted in the deep learning model as important spatial features to distinguish leaves from inoculated and mock-inoculated trees. In addition, spectral and spatial feature patterns identified in the machine learning-based models were found relative to the DED susceptibility of elm genotypes. Though further studies are needed to assess applications in other pathosystems, hyper- and multi-spectral leaf imagers combined with machine learning show potential as new tools for disease phenotyping in trees.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
橙花发布了新的文献求助10
刚刚
乐乐应助wumin采纳,获得10
1秒前
1秒前
1秒前
艳艳子完成签到,获得积分10
2秒前
For发布了新的文献求助30
3秒前
3秒前
Beyond095完成签到,获得积分10
3秒前
英俊的铭应助蓝歆采纳,获得10
4秒前
Choi完成签到,获得积分10
4秒前
薛布慧完成签到 ,获得积分10
5秒前
派大星发布了新的文献求助10
5秒前
艳艳子发布了新的文献求助10
5秒前
田様应助笨笨歌曲采纳,获得10
6秒前
栗子完成签到 ,获得积分10
7秒前
越遇完成签到 ,获得积分10
7秒前
xuan21完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
夏林发布了新的文献求助10
11秒前
11秒前
凉雨渲发布了新的文献求助10
12秒前
12秒前
SciGPT应助直率的柚子采纳,获得10
12秒前
上官若男应助GT采纳,获得10
12秒前
果果完成签到,获得积分10
13秒前
ZX0501完成签到,获得积分10
13秒前
chrysan发布了新的文献求助10
13秒前
江小鱼在查文献完成签到,获得积分10
14秒前
14秒前
15秒前
17秒前
19秒前
20秒前
笨笨歌曲发布了新的文献求助10
20秒前
走啊走啊走完成签到,获得积分10
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011