计算机科学
可扩展性
降维
代表(政治)
离散化
符号数据分析
维数(图论)
维数之咒
数据挖掘
系列(地层学)
光学(聚焦)
人工智能
过程(计算)
机器学习
模式识别(心理学)
理论计算机科学
数据库
数学
政治学
纯数学
法学
古生物学
数学分析
物理
光学
操作系统
政治
生物
作者
Mariem Taktak,Slim Triki
出处
期刊:Communications in computer and information science
日期:2023-01-01
卷期号:: 740-752
标识
DOI:10.1007/978-3-031-41774-0_58
摘要
This paper presents a comprehensive review of the Time Series (TS) data classification based on symbolic representation. In particular, we will focus on the classification of the Electro-Cardio Graphic (ECG) signal whatever the application it is used for. That is, we review the TS symbolic discretization in order to guide practitioners to make appropriate choice which meet their requirements in the ECG classification problem. We believe that scalability challenge in a real-time monitoring of cardiovascular patients, for example, require adapted representation that enhance dimensionality reduction before conducting classification process. Furthermore, an overview of the recent classification methods based on ordered symbolic attributes is detailed.
科研通智能强力驱动
Strongly Powered by AbleSci AI