Compressive Sensing Based Image Codec With Partial Pre-Calculation

哈夫曼编码 计算机科学 编解码器 解码方法 编码器 压缩传感 算法 迭代重建 数据压缩 人工智能 电信 操作系统
作者
Jiayao Xu,Jian Yang,Fuma Kimishima,Ittetsu Taniguchi,Jinjia Zhou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tmm.2023.3327534
摘要

Compressive Sensing (CS) surpasses the limitations of the sampling theorem by reducing signal dimensions during sampling. Recent works integrate measurement coding into CS to enhance the compression ratio. However, these works significantly decrease image quality, and both encoding and decoding become time-consuming. This paper proposes a Compressive Sensing based Image Codec with Partial Pre-calculation (CSCP) to solve these issues. The CSCP separates the original reconstruction procedure into two parts: reconstructing the frequency domain data and the inverse calculation. Depending on the feature of the chosen deterministic sensing matrix, the complex reconstruction procedure is reduced to twice matrix-based multiplications, resulting in a low time cost. Moreover, we can further optimize the reconstruction process by moving the frequency domain data reconstruction to the encoder, referred to as the partial pre-calculation process. Then compressing the sparse data in the frequency domain. This approach has two main benefits: 1) it reduces the complexity of the decoder, and 2) it results in less degradation in quality compared to existing measurement coding methods. Additionally, this work proposes the One-Row-Two-Tables strategy for defining Huffman Coding units. This approach leverages the quantized data distribution to improve compression efficiency while maintaining low complexity. In the decoder, the sequence of operations includes Huffman decoding, dequantization, and inverse calculation. Compared to the state-of-the-art, this work decreases 22.61 $\%$ bpp with 17.72 $\%$ increased quality. Meanwhile, time speeds up to 649.13× on the encoder, 11.03× on the decoder, and 288.46× in total.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐煎饼完成签到,获得积分10
刚刚
刚刚
1秒前
科研通AI5应助科研小白采纳,获得10
1秒前
温曈发布了新的文献求助10
1秒前
whiteside完成签到,获得积分10
1秒前
良陈美景奈何天完成签到 ,获得积分10
2秒前
lbhanc完成签到,获得积分10
3秒前
123456789发布了新的文献求助10
3秒前
苦呀发布了新的文献求助30
3秒前
3秒前
小时发布了新的文献求助10
4秒前
烟花应助Jisong采纳,获得10
4秒前
隐形曼青应助123采纳,获得10
4秒前
mei完成签到,获得积分10
4秒前
4秒前
5秒前
优秀小甜瓜完成签到,获得积分10
6秒前
科研通AI5应助tsunami采纳,获得10
6秒前
6秒前
6秒前
peace发布了新的文献求助10
6秒前
赘婿应助TobyGarfielD采纳,获得10
7秒前
方源发布了新的文献求助10
7秒前
7秒前
Chenjunxian完成签到,获得积分10
7秒前
jiaxiang发布了新的文献求助10
8秒前
烟花应助正常采纳,获得10
8秒前
8秒前
加满都完成签到,获得积分20
8秒前
heqin完成签到,获得积分10
8秒前
崔铭哲完成签到,获得积分10
8秒前
科研通AI6应助stay采纳,获得10
9秒前
科研通AI5应助甜蜜老太采纳,获得10
9秒前
PLA发布了新的文献求助10
9秒前
冷静的高烽完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001060
求助须知:如何正确求助?哪些是违规求助? 4246201
关于积分的说明 13228838
捐赠科研通 4044813
什么是DOI,文献DOI怎么找? 2212873
邀请新用户注册赠送积分活动 1223033
关于科研通互助平台的介绍 1143352