Compressive Sensing Based Image Codec With Partial Pre-Calculation

哈夫曼编码 计算机科学 编解码器 解码方法 编码器 压缩传感 算法 迭代重建 数据压缩 人工智能 电信 操作系统
作者
Jiayao Xu,Jian Yang,Fuma Kimishima,Ittetsu Taniguchi,Jinjia Zhou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:3
标识
DOI:10.1109/tmm.2023.3327534
摘要

Compressive Sensing (CS) surpasses the limitations of the sampling theorem by reducing signal dimensions during sampling. Recent works integrate measurement coding into CS to enhance the compression ratio. However, these works significantly decrease image quality, and both encoding and decoding become time-consuming. This paper proposes a Compressive Sensing based Image Codec with Partial Pre-calculation (CSCP) to solve these issues. The CSCP separates the original reconstruction procedure into two parts: reconstructing the frequency domain data and the inverse calculation. Depending on the feature of the chosen deterministic sensing matrix, the complex reconstruction procedure is reduced to twice matrix-based multiplications, resulting in a low time cost. Moreover, we can further optimize the reconstruction process by moving the frequency domain data reconstruction to the encoder, referred to as the partial pre-calculation process. Then compressing the sparse data in the frequency domain. This approach has two main benefits: 1) it reduces the complexity of the decoder, and 2) it results in less degradation in quality compared to existing measurement coding methods. Additionally, this work proposes the One-Row-Two-Tables strategy for defining Huffman Coding units. This approach leverages the quantized data distribution to improve compression efficiency while maintaining low complexity. In the decoder, the sequence of operations includes Huffman decoding, dequantization, and inverse calculation. Compared to the state-of-the-art, this work decreases 22.61 $\%$ bpp with 17.72 $\%$ increased quality. Meanwhile, time speeds up to 649.13× on the encoder, 11.03× on the decoder, and 288.46× in total.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Acanyi完成签到,获得积分10
刚刚
陶醉怜容完成签到,获得积分10
刚刚
Linzi完成签到,获得积分10
刚刚
郭优优完成签到 ,获得积分10
1秒前
呼叫554完成签到,获得积分10
1秒前
zoey完成签到,获得积分10
1秒前
xie完成签到,获得积分10
1秒前
yangchang完成签到,获得积分10
1秒前
老福贵儿应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
burno1112完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
小流浪完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
老福贵儿应助科研通管家采纳,获得10
2秒前
老福贵儿应助科研通管家采纳,获得10
2秒前
乔垣结衣完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
老福贵儿应助科研通管家采纳,获得10
3秒前
TranYan完成签到,获得积分10
3秒前
再睡十分钟完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助楠楠DAYTOY采纳,获得10
5秒前
不吃坏橘子完成签到,获得积分10
5秒前
5秒前
双目识林完成签到 ,获得积分10
6秒前
落霞完成签到,获得积分10
6秒前
Malmever完成签到,获得积分10
6秒前
6秒前
李二狗完成签到,获得积分10
7秒前
7秒前
7秒前
打打应助元谷雪采纳,获得10
7秒前
你好完成签到,获得积分10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698917
求助须知:如何正确求助?哪些是违规求助? 5127463
关于积分的说明 15223160
捐赠科研通 4853889
什么是DOI,文献DOI怎么找? 2604380
邀请新用户注册赠送积分活动 1555868
关于科研通互助平台的介绍 1514197