监督人
运动规划
强化学习
任务(项目管理)
路径(计算)
计算机科学
路径长度
数学优化
人工智能
实时计算
分布式计算
运筹学
机器人
工程类
数学
系统工程
计算机网络
法学
政治学
作者
Congjie Pan,Zhenyi Zhang,Yutao Chen,Dingci Lin,Jie Huang
标识
DOI:10.1016/j.ifacol.2023.10.866
摘要
This study investigates the multi-objective path planning problem in logistics autonomous systems (LAS), where unmanned ground vehicles (UGVs) need to deliver multiple packages to various destinations while avoiding obstacles. Using the null-space-based behavioral control (NSBC) framework, we extend our previous reinforcement learning task supervisor (RLTS) to propose an enhanced RLTS (IRLTS) for optimal path planning and dynamic, simultaneous task priority adjustment. Notably, IRLTS can re-order delivery to minimize total path length when presented with unknown obstacles. Simulations affirm that IRLTS achieves shorter total path lengths than RLTS and outperforms offline optimization-based algorithms on path length and re-planning capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI