化学
呋喃
部分
果糖
羟甲基
美拉德反应
脱羧
色氨酸
高效液相色谱法
吲哚试验
食品科学
蔗糖
有机化学
生物化学
氨基酸
催化作用
作者
Tomás Herraiz,Adriana Peña Pérez Negrón,Antonio Salgado
标识
DOI:10.1021/acs.jafc.3c03612
摘要
β-Carbolines are naturally occurring bioactive alkaloids found in foods and in vivo. This research reports the identification, characterization, mechanism of formation, and occurrence of perlolyrine (1-(5-(hydroxymethyl)furan-2-yl)-9H-pyrido[3,4-b]indole), a β-carboline with a furan moiety. Perlolyrine did not arise from l-tryptophan and hydroxymethylfurfural but from the reaction of l-tryptophan with 3-deoxyglucosone, an intermediate of carbohydrate degradation. The mechanism of formation occurs through 3,4-dihydro-β-carboline-3-carboxylic acid intermediates (imines), followed by the oxidation of C1′-OH to ketoimine and oxidative decarboxylation at C-3, along with dehydration and cyclization to afford the β-carboline with a furan moiety. The formation of perlolyrine was favored in acidic conditions and temperatures in the range of 70–110 °C. Perlolyrine occurred in the reactions of tryptophan with carbohydrates. The formation rate from fructose was much higher than from glucose. Sucrose also gave perlolyrine under acidic conditions and heating. Perlolyrine was identified in many foods by HPLC-MS and analyzed by HPLC-fluorescence. It occurred in many processed foods such as tomato products including tomato puree, fried tomato, ketchups, tomato juices, and jams but also in soy sauce, beer, balsamic vinegar, fruit juices, dried fruits, fried onion, and honey. The concentrations ranged from an undetected amount to 3.5 μg/g with the highest average levels found in tomato concentrate (1.9 μg/g) and soy sauce (1.5 μg/mL). The results show that perlolyrine formed during the heating process of foods. It is concluded that perlolyrine is widely present in foods and it is daily ingested in the diet.
科研通智能强力驱动
Strongly Powered by AbleSci AI