清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Machine Learning Framework to Improve Rat Clearance Predictions and Inform Physiologically Based Pharmacokinetic Modeling

基于生理学的药代动力学模型 药代动力学 体内 背景(考古学) 药物发现 生物信息学 计算机科学 化学 药理学 机器学习 医学 生物化学 生物 基因 生物技术 古生物学
作者
Andrea Morger,Michael Reutlinger,Neil Parrott,Andrés Olivares‐Morales
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:20 (10): 5052-5065 被引量:2
标识
DOI:10.1021/acs.molpharmaceut.3c00374
摘要

During drug discovery and development, achieving appropriate pharmacokinetics is key to establishment of the efficacy and safety of new drugs. Physiologically based pharmacokinetic (PBPK) models integrating in vitro-to-in vivo extrapolation have become an essential in silico tool to achieve this goal. In this context, the most important and probably most challenging pharmacokinetic parameter to estimate is the clearance. Recent work on high-throughput PBPK modeling during drug discovery has shown that a good estimate of the unbound intrinsic clearance (CLint,u,) is the key factor for useful PBPK application. In this work, three different machine learning-based strategies were explored to predict the rat CLint,u as the input into PBPK. Therefore, in vivo and in vitro data was collected for a total of 2639 proprietary compounds. The strategies were compared to the standard in vitro bottom-up approach. Using the well-stirred liver model to back-calculate in vivo CLint,u from in vivo rat clearance and then training a machine learning model on this CLint,u led to more accurate clearance predictions (absolute average fold error (AAFE) 3.1 in temporal cross-validation) than the bottom-up approach (AAFE 3.6-16, depending on the scaling method) and has the advantage that no experimental in vitro data is needed. However, building a machine learning model on the bias between the back-calculated in vivo CLint,u and the bottom-up scaled in vitro CLint,u also performed well. For example, using unbound hepatocyte scaling, adding the bias prediction improved the AAFE in the temporal cross-validation from 16 for bottom-up to 2.9 together with the bias prediction. Similarly, the log Pearson r2 improved from 0.1 to 0.29. Although it would still require in vitro measurement of CLint,u., using unbound scaling for the bottom-up approach, the need for correction of the fu,inc by fu,p data is circumvented. While the above-described ML models were built on all data points available per approach, it is discussed that evaluation comparison across all approaches could only be performed on a subset because ca. 75% of the molecules had missing or unquantifiable measurements of the fraction unbound in plasma or in vitro unbound intrinsic clearance, or they dropped out due to the blood-flow limitation assumed by the well-stirred model. Advantageously, by predicting CLint,u as the input into PBPK, existing workflows can be reused and the prediction of the in vivo clearance and other PK parameters can be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性仙人掌完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
6秒前
自然的含蕾完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
weiweiwu12完成签到,获得积分10
23秒前
28秒前
量子星尘发布了新的文献求助150
28秒前
32秒前
lilaccalla完成签到 ,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
SandyHZY发布了新的文献求助20
38秒前
apt完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
48秒前
文静完成签到 ,获得积分10
49秒前
花花521完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
淡然藏花完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
雪山飞龙发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Singularity完成签到,获得积分0
1分钟前
冉阳发布了新的文献求助10
2分钟前
2分钟前
闪闪的谷梦完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
webmaster完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
欢呼的茗茗完成签到 ,获得积分10
2分钟前
宇文雨文完成签到 ,获得积分10
2分钟前
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744098
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757798
科研通“疑难数据库(出版商)”最低求助积分说明 734549