Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention

计算机科学 人工智能 特征(语言学) 目标检测 比例(比率) 光学(聚焦) 对象(语法) 相似性(几何) 模式识别(心理学) 计算机视觉 频道(广播) 代表(政治) 探测器 低分辨率 图像(数学) 高分辨率 遥感 电信 哲学 语言学 计算机网络 物理 量子力学 政治 法学 政治学 光学 地质学
作者
Gang Song,Hongwei Du,Xinyue Zhang,Fangxun Bao,Yunfeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107455-107455 被引量:6
标识
DOI:10.1016/j.engappai.2023.107455
摘要

Small object detection in unmanned aerial vehicle images is always challenging due to the low resolution and the limited amount of information that they contain. Many feature enhancement effects have been introduced to improve the detection of small objects, but the extracted effective information is still insufficient, and redundant information interference is an issue. In this paper, we propose a new multi-scale hybrid attention based detector (MHA-YOLOv5), which integrates the similarity relationships between objects into you only look once version 5 (YOLOv5) for small object detection. Specifically, a novel multi-scale hybrid attention (MHA) structure is proposed to enhance the feature representation of small objects. This structure contains three modules: multi-scale attention (MsA), foreground enhancement module (FEM) and depthwise separable channel attention (DSCA). The MsA module is designed to build connections between large objects with abundant details and small objects with insufficient features on multiple scale features and capture the similarity relationships between objects. To reduce the interference of redundant information, the FEM is used to focus on the foreground features of multiple scale features, and the DSCA module is utilized to effectively extract multidimensional channel information. Sufficient experiments on the challenging VisDrone2019-DET, UAVDT and CARPK datasets demonstrate the effectiveness and superiority of the proposed approach. Specifically, compared with the performance of YOLOv5, MHA-YOLOv5 demonstrates a 2.82% mean average precision (mAP) improvement on the VisDrone2019-DET dataset, a 2.25% mAP improvement on the UAVDT dataset, and a 3.07% mAP improvement on the CARPK dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
4秒前
4秒前
李健应助liuzengzhang666采纳,获得10
5秒前
7秒前
7秒前
Georgechan完成签到,获得积分10
9秒前
9秒前
9秒前
Akim应助善良的可乐采纳,获得10
9秒前
9秒前
tls完成签到,获得积分10
10秒前
10秒前
10秒前
孙福禄应助稳重筝采纳,获得10
12秒前
呆二龙完成签到 ,获得积分10
12秒前
七七完成签到,获得积分10
12秒前
YCI完成签到 ,获得积分20
12秒前
lauhoihung完成签到,获得积分10
13秒前
古往今来应助傅全有采纳,获得20
13秒前
树袋发布了新的文献求助10
13秒前
14秒前
14秒前
橘子海发布了新的文献求助10
14秒前
光热效应完成签到 ,获得积分20
14秒前
Hello应助HJJ采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
obdixp发布了新的文献求助20
15秒前
你快睡吧发布了新的文献求助10
16秒前
华仔应助clairr采纳,获得30
16秒前
传奇3应助温柔映阳采纳,获得10
16秒前
lm发布了新的文献求助10
17秒前
18秒前
18秒前
guozizi发布了新的文献求助10
19秒前
20秒前
21秒前
英姑应助xiaolaohu采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531183
关于积分的说明 11252671
捐赠科研通 3269809
什么是DOI,文献DOI怎么找? 1804780
邀请新用户注册赠送积分活动 881885
科研通“疑难数据库(出版商)”最低求助积分说明 809021