Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention

计算机科学 人工智能 特征(语言学) 目标检测 比例(比率) 光学(聚焦) 对象(语法) 相似性(几何) 模式识别(心理学) 计算机视觉 频道(广播) 代表(政治) 探测器 低分辨率 图像(数学) 高分辨率 遥感 电信 哲学 语言学 计算机网络 物理 量子力学 政治 法学 政治学 光学 地质学
作者
Gang Song,Hongwei Du,Xinyue Zhang,Fangxun Bao,Yunfeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107455-107455 被引量:6
标识
DOI:10.1016/j.engappai.2023.107455
摘要

Small object detection in unmanned aerial vehicle images is always challenging due to the low resolution and the limited amount of information that they contain. Many feature enhancement effects have been introduced to improve the detection of small objects, but the extracted effective information is still insufficient, and redundant information interference is an issue. In this paper, we propose a new multi-scale hybrid attention based detector (MHA-YOLOv5), which integrates the similarity relationships between objects into you only look once version 5 (YOLOv5) for small object detection. Specifically, a novel multi-scale hybrid attention (MHA) structure is proposed to enhance the feature representation of small objects. This structure contains three modules: multi-scale attention (MsA), foreground enhancement module (FEM) and depthwise separable channel attention (DSCA). The MsA module is designed to build connections between large objects with abundant details and small objects with insufficient features on multiple scale features and capture the similarity relationships between objects. To reduce the interference of redundant information, the FEM is used to focus on the foreground features of multiple scale features, and the DSCA module is utilized to effectively extract multidimensional channel information. Sufficient experiments on the challenging VisDrone2019-DET, UAVDT and CARPK datasets demonstrate the effectiveness and superiority of the proposed approach. Specifically, compared with the performance of YOLOv5, MHA-YOLOv5 demonstrates a 2.82% mean average precision (mAP) improvement on the VisDrone2019-DET dataset, a 2.25% mAP improvement on the UAVDT dataset, and a 3.07% mAP improvement on the CARPK dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
LJJ完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
8秒前
阿姨洗铁路完成签到 ,获得积分10
13秒前
抹不掉的记忆完成签到,获得积分10
15秒前
15秒前
余杭村王小虎完成签到,获得积分10
16秒前
韭黄完成签到,获得积分20
20秒前
jeffrey完成签到,获得积分10
20秒前
Rondab应助机灵枕头采纳,获得10
26秒前
佳无夜完成签到,获得积分10
31秒前
摆哥完成签到,获得积分10
35秒前
66完成签到,获得积分10
40秒前
zlqq完成签到 ,获得积分10
40秒前
Hardskills发布了新的文献求助10
43秒前
44秒前
之_ZH完成签到 ,获得积分10
52秒前
gds2021完成签到 ,获得积分10
54秒前
你好呀嘻嘻完成签到 ,获得积分10
54秒前
梅特卡夫完成签到,获得积分10
56秒前
熊雅完成签到,获得积分10
57秒前
59秒前
睡到自然醒完成签到 ,获得积分10
1分钟前
cis2014完成签到,获得积分10
1分钟前
独特的大有完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
xingyi完成签到,获得积分10
1分钟前
1分钟前
舒心的秋荷完成签到 ,获得积分10
1分钟前
zz123发布了新的文献求助10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
粗犷的灵松完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
ncuwzq完成签到,获得积分10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
1分钟前
净禅完成签到 ,获得积分10
1分钟前
1分钟前
迷人的寒风完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022