Small object detection in unmanned aerial vehicle images using multi-scale hybrid attention

计算机科学 人工智能 特征(语言学) 目标检测 比例(比率) 光学(聚焦) 对象(语法) 相似性(几何) 模式识别(心理学) 计算机视觉 频道(广播) 代表(政治) 探测器 低分辨率 图像(数学) 高分辨率 遥感 电信 哲学 语言学 计算机网络 物理 量子力学 政治 法学 政治学 光学 地质学
作者
Gang Song,Hongwei Du,Xinyue Zhang,Fangxun Bao,Yunfeng Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107455-107455 被引量:6
标识
DOI:10.1016/j.engappai.2023.107455
摘要

Small object detection in unmanned aerial vehicle images is always challenging due to the low resolution and the limited amount of information that they contain. Many feature enhancement effects have been introduced to improve the detection of small objects, but the extracted effective information is still insufficient, and redundant information interference is an issue. In this paper, we propose a new multi-scale hybrid attention based detector (MHA-YOLOv5), which integrates the similarity relationships between objects into you only look once version 5 (YOLOv5) for small object detection. Specifically, a novel multi-scale hybrid attention (MHA) structure is proposed to enhance the feature representation of small objects. This structure contains three modules: multi-scale attention (MsA), foreground enhancement module (FEM) and depthwise separable channel attention (DSCA). The MsA module is designed to build connections between large objects with abundant details and small objects with insufficient features on multiple scale features and capture the similarity relationships between objects. To reduce the interference of redundant information, the FEM is used to focus on the foreground features of multiple scale features, and the DSCA module is utilized to effectively extract multidimensional channel information. Sufficient experiments on the challenging VisDrone2019-DET, UAVDT and CARPK datasets demonstrate the effectiveness and superiority of the proposed approach. Specifically, compared with the performance of YOLOv5, MHA-YOLOv5 demonstrates a 2.82% mean average precision (mAP) improvement on the VisDrone2019-DET dataset, a 2.25% mAP improvement on the UAVDT dataset, and a 3.07% mAP improvement on the CARPK dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助优秀的绿蕊采纳,获得10
2秒前
健忘的初翠完成签到,获得积分10
2秒前
4秒前
lwm不想看文献完成签到 ,获得积分10
4秒前
6秒前
拼搏一曲发布了新的文献求助10
7秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得20
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
wushuwen发布了新的文献求助10
9秒前
10秒前
xuan完成签到,获得积分10
11秒前
完美世界应助段一帆采纳,获得10
13秒前
少敏敏完成签到,获得积分10
15秒前
may发布了新的文献求助10
15秒前
20秒前
22秒前
兜兜关注了科研通微信公众号
22秒前
wbh完成签到,获得积分10
23秒前
太牛的GGB发布了新的文献求助10
23秒前
wbh发布了新的文献求助10
25秒前
乐乐应助may采纳,获得10
25秒前
顺利的梦菲完成签到 ,获得积分10
26秒前
777完成签到 ,获得积分10
26秒前
上官若男应助忧郁盼夏采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173