阴极
材料科学
尖晶石
相(物质)
化学物理
动力学
缩放比例
离子
相变
化学工程
磁滞
凝聚态物理
冶金
热力学
化学
物理化学
物理
几何学
数学
有机化学
量子力学
工程类
作者
Zijian Cai,Bin Ouyang,Han‐Ming Hau,Tina Chen,Raynald Giovine,Krishna Prasad Koirala,Linze Li,Huiwen Ji,Yang Ha,Yingzhi Sun,Jianping Huang,Yu Chen,Vincent C. Wu,Wanli Yang,Chongmin Wang,Raphaële J. Clément,Zhengyan Lun,Gerbrand Ceder
出处
期刊:Nature Energy
[Springer Nature]
日期:2023-10-05
卷期号:9 (1): 27-36
被引量:25
标识
DOI:10.1038/s41560-023-01375-9
摘要
Abstract Earth-abundant cathode materials are urgently needed to enable scaling of the Li-ion industry to multiply terawatt hours of annual production, necessitating reconsideration of how good cathode materials can be obtained. Irreversible transition metal migration and phase transformations in Li-ion cathodes are typically believed to be detrimental because they may trigger voltage hysteresis, poor kinetics and capacity degradation. Here we challenge this conventional consensus by reporting an unusual phase transformation from disordered Li- and Mn-rich rock salts to a new phase (named δ ), which displays partial spinel-like ordering with short coherence length and exhibits high energy density and rate capability. Unlike other Mn-based cathodes, the δ phase exhibits almost no voltage fade upon cycling. We identify the driving force and kinetics of this in situ cathode formation and establish design guidelines for Li- and Mn-rich compositions that combine high energy density, high rate capability and good cyclability, thereby enabling Mn-based energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI