亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Energy-Efficient and Privacy-Preserving Blockchain Based Federated Learning for Smart Healthcare System

计算机科学 同态加密 加密 差别隐私 计算机安全 单点故障 信息隐私 高效能源利用 人体区域网 分布式计算 数据挖掘 计算机网络 无线传感器网络 电气工程 工程类
作者
Moirangthem Biken Singh,Himanshu Singh,Ajay Pratap
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tsc.2023.3332955
摘要

The privacy-focused concept of Federated Learning (FL) allows local data processing without disclosing patients’ health details to a central server. However, its vulnerability to privacy breaches through shared model weights and susceptibility to a single point of failure remain concerns. Energy constraints of Wireless Body Area Networks (WBANs) necessitate considering computation and transmission energy in the FL process. Thus, this article introduces a smart healthcare system prioritizing energy efficiency and privacy through a blockchain-backed FL model. Yet, WBAN users might be unwilling to share data without adequate incentives, and miners might hesitate due to the high energy usage associated with maintaining the blockchain. Therefore, an optimization problem is formulated to maximize system utility while considering energy, WBAN incentives, miner revenue, and FL loss. A computationally efficient stable matching-based algorithm is proposed for optimizing utility via associating WBANs and miners. Associated WBANs use Quantized Neural Networks (QNNs) to minimize computation energy. Moreover, this work integrates Differential Privacy (DP) and Homomorphic Encryption (HE) mechanisms to prevent information leakage by adding noise to gradients before updating model weights and encrypting consequences before transmitting them to miners. Real-world experiments validate the framework, yielding an average of 15.1%, 9.03%, and 15.35% improvements over existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
科研通AI5应助读书的时候采纳,获得10
16秒前
23秒前
传奇3应助读书的时候采纳,获得10
34秒前
科研通AI5应助Blackrose2412采纳,获得10
34秒前
科研通AI5应助读书的时候采纳,获得10
52秒前
1分钟前
1分钟前
1分钟前
千里草完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
幸运的姜姜完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助小陈要发SCI采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935426
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058843
捐赠科研通 3977788
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107387