Energy-Efficient and Privacy-Preserving Blockchain Based Federated Learning for Smart Healthcare System

计算机科学 同态加密 加密 差别隐私 计算机安全 单点故障 信息隐私 高效能源利用 人体区域网 分布式计算 数据挖掘 计算机网络 无线传感器网络 电气工程 工程类
作者
Moirangthem Biken Singh,Himanshu Singh,Ajay Pratap
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tsc.2023.3332955
摘要

The privacy-focused concept of Federated Learning (FL) allows local data processing without disclosing patients’ health details to a central server. However, its vulnerability to privacy breaches through shared model weights and susceptibility to a single point of failure remain concerns. Energy constraints of Wireless Body Area Networks (WBANs) necessitate considering computation and transmission energy in the FL process. Thus, this article introduces a smart healthcare system prioritizing energy efficiency and privacy through a blockchain-backed FL model. Yet, WBAN users might be unwilling to share data without adequate incentives, and miners might hesitate due to the high energy usage associated with maintaining the blockchain. Therefore, an optimization problem is formulated to maximize system utility while considering energy, WBAN incentives, miner revenue, and FL loss. A computationally efficient stable matching-based algorithm is proposed for optimizing utility via associating WBANs and miners. Associated WBANs use Quantized Neural Networks (QNNs) to minimize computation energy. Moreover, this work integrates Differential Privacy (DP) and Homomorphic Encryption (HE) mechanisms to prevent information leakage by adding noise to gradients before updating model weights and encrypting consequences before transmitting them to miners. Real-world experiments validate the framework, yielding an average of 15.1%, 9.03%, and 15.35% improvements over existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三番又六次完成签到,获得积分10
1秒前
杨大葱完成签到,获得积分10
1秒前
科目三应助Kate采纳,获得10
1秒前
Jasper应助丰富青文采纳,获得10
1秒前
小情绪完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助FG采纳,获得10
2秒前
2秒前
2秒前
小杭76应助12采纳,获得10
3秒前
4秒前
5秒前
yxt完成签到,获得积分10
5秒前
6秒前
6秒前
恋晨完成签到 ,获得积分10
6秒前
苏世誉发布了新的文献求助10
6秒前
刘永红发布了新的文献求助10
6秒前
橙西西完成签到,获得积分10
7秒前
Hello应助我最爱读文献了采纳,获得10
8秒前
yxt发布了新的文献求助10
8秒前
浮游应助何以载道采纳,获得10
9秒前
FG完成签到,获得积分10
9秒前
KYY完成签到 ,获得积分10
10秒前
11秒前
肉苁蓉完成签到 ,获得积分20
11秒前
fu发布了新的文献求助30
11秒前
FG发布了新的文献求助10
12秒前
12秒前
飞舞的青鱼完成签到,获得积分10
12秒前
12秒前
13秒前
科研通AI5应助杨丽采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
彭于晏应助蓝眼睛采纳,获得10
14秒前
15秒前
文静的夜阑完成签到,获得积分20
15秒前
炼丹师应助啊哦采纳,获得20
16秒前
森水垚发布了新的文献求助10
16秒前
jihe发布了新的文献求助10
17秒前
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590