ATG16L1
自噬
丹参
体内
医学
免疫印迹
MAPK/ERK通路
PI3K/AKT/mTOR通路
分子生物学
药理学
激酶
化学
信号转导
生物化学
生物
病理
细胞凋亡
替代医学
生物技术
中医药
基因
作者
Qian Yu,Youfu He,Aili Qiong,Wenhang Zhang
出处
期刊:International Heart Journal
[International Heart Journal Association]
日期:2023-09-30
卷期号:64 (5): 945-954
被引量:3
摘要
Tanshinone IIA (Tan IIA), the core ingredient of Salvia miltiorrhiza, is commonly used for treating cardiovascular diseases. However, its underlying mechanism in regulating autophagy in atherosclerosis (AS) remains unclear. An in vivo model of AS was constructed using Apolipoprotein E-deficient (ApoE-/-) mice fed with a high-fat diet. Histopathologic changes and lipid accumulation were evaluated by hematoxylin and eosin (HE) and Oil red O staining, respectively. The inflammatory cytokine levels were evaluated by Enzyme-linked immunosorbent assay (ELISA). An oxidized low-density lipoprotein (ox-LDL) was used to induce foam cells in RAW264.7 cells. Cholesterol uptake and efflux assay were used to assess changes in intracellular and extracellular cholesterol levels. The expression levels of autophagy-related protein-16-like protein 1 (ATG16L1) and miR-214-3p in the samples and cells derived from mice were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), and the protein levels of the mitogen-activated protein kinase (MAPK)/mammalian target of rapamycin (mTOR) and autophagy-related markers were detected using western blot. The binding site of miR-214-3p on ATG16L1 was determined using a dual-luciferase reporter assay. We observed a decrease in ATG16L1 and increase in miR-214-3p expression level in the AS mice and ox-LDL stimulated RAW264.7 cells. However, the miR-214-3p and ATG16L1 expression could be reversed by Tan IIA. In vivo experiments showed that Tan IIA alleviated AS by reducing lipid accumulation and inflammatory factor levels and promoting autophagy. The in vitro assays demonstrated that Tan IIA regulated lipid levels and autophagy via the miR-214-3p/ATG16L1 axis to inhibit foam cell formation. Additionally, Tan IIA inhibited the MAPK/mTOR pathway by reducing miR-214-3p expression and promoting autophagy. Findings from this study suggested that Tan IIA regulated the MAPK/mTOR signal-mediated autophagy to alleviate AS through the miR-214-3p/ATG16L1 axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI