Prediction on daily spatial distribution of chlorophyll-a in coastal seas using a synthetic method of remote sensing, machine learning and numerical modeling

水华 环境科学 卷积神经网络 有色溶解有机物 生物地球化学循环 叶绿素a 后发 计算机科学 比例(比率) 机器学习 遥感 营养物 浮游植物 生态学 地理 地图学 生物 植物
作者
Hai Li,Xiuren Li,Dehai Song,Jie Nie,Shengkang Liang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:910: 168642-168642 被引量:5
标识
DOI:10.1016/j.scitotenv.2023.168642
摘要

Harmful algal blooms (HABs) pose a severe environmental issue and have significant economic and ecological consequences on coastal oceans. Predicting the occurrence of these blooms has become increasingly vital for coastal communities. To facilitate this, chlorophyll-a (Chl-a) levels have been widely used to forecast algal blooms. Although Hydro-biogeochemical (HBGC) process-based models display reasonable accuracy in predicting hydrodynamic variables and nutrients, they are not as effective in predicting Chl-a. Purely data-driven machine learning techniques also have limitations in accurately predicting Chl-a of high spatio-temporal resolutions. In this study, a coupled HBGC-Convolutional Neural Network (CNN) model was developed to predict the daily surface Chl-a distribution. The HBGC-CNN model integrates the information gathered by the HBGC model on temperature, salinity, dissolved inorganic nitrogen, dissolved organic phosphorus, and zooplankton with the remote sensing Chl-a products for the CNN model training. The results revealed that the HBGC-CNN model can effectively reproduce both daily and seasonal Chl-a variations, and interpret spatiotemporal information related to an HAB event triggered by the heavy rainfall during typhoon Lekima in 2019. Furthermore, this method can be used for data reconstruction, producing gap-free Chl-a products for historical reanalysis, especially in nearshore regions. The successful implementation of the HBGC-CNN model in predicting Chl-a highlights its potential in being incorporated into an operational forecasting system from a regional scale to a global scale, reducing the adverse impact of HAB disasters and facilitating emergency treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhouyou发布了新的文献求助10
1秒前
慕青应助风_feng采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
琳子里完成签到,获得积分10
3秒前
4秒前
星星发布了新的文献求助10
4秒前
zxj发布了新的文献求助10
4秒前
科研通AI2S应助简隋英采纳,获得10
4秒前
没有昵称发布了新的文献求助10
6秒前
LLLLL发布了新的文献求助10
6秒前
chenxin7271发布了新的文献求助10
6秒前
可乐小伙子完成签到,获得积分10
6秒前
完美世界应助小陈采纳,获得10
6秒前
小瑀发布了新的文献求助10
7秒前
稳重初翠发布了新的文献求助10
7秒前
7秒前
修修勾完成签到,获得积分10
7秒前
YzqYzq发布了新的文献求助10
7秒前
Lee完成签到,获得积分10
7秒前
8秒前
UNICORN发布了新的文献求助10
8秒前
hexiqin完成签到,获得积分10
8秒前
9秒前
无花果应助肉肉采纳,获得10
9秒前
愤怒的qiang应助绿眼虫采纳,获得10
9秒前
10秒前
汉堡包应助勤奋白昼采纳,获得10
10秒前
10秒前
风_feng完成签到,获得积分10
10秒前
12发布了新的文献求助10
10秒前
10秒前
fighting完成签到,获得积分10
10秒前
Yyang完成签到,获得积分10
10秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123951
求助须知:如何正确求助?哪些是违规求助? 2774359
关于积分的说明 7722160
捐赠科研通 2429940
什么是DOI,文献DOI怎么找? 1290751
科研通“疑难数据库(出版商)”最低求助积分说明 621911
版权声明 600283