神经炎症
神经保护
氧化应激
黑质
化学
帕金森病
活性氧
小胶质细胞
药理学
一氧化氮
神经科学
多巴胺能
微透析
多巴胺
疾病
炎症
医学
免疫学
心理学
生物化学
病理
有机化学
作者
Binbin Hu,Huaqiang Fang,Zhixin Huang,Wenjing Huang,Li Huang,Huijie Liu,Fanzhen Lv,Wei Huang,Xiaolei Wang
标识
DOI:10.1016/j.cej.2023.142959
摘要
Parkinson's disease (PD) is a complex neurodegenerative disease affected by many factors. Although there are treatments to combat the symptoms of PD, such as levodopa and deep electrical stimulation, there is currently no ideal therapy to delay or prevent the progression of PD. Oxidative stress and neuroinflammation have been considered as the key mechanisms in the occurrence and development of PD. In theory, anti-oxidative stress and anti-neuroinflammation are effective strategies for the treatment of PD. In this work, we have attempted for the first time to construct a nitric oxide (NO) gas and drug combination therapeutic nanoplatform (Lf-UZSP) that can penetrate the blood–brain barrier (BBB) and target PD microenvironment through upconversion nanoparticles (UCNPs). The nanoplatform can target the PD microenvironment in the brain and subsequently convert near-infrared (NIR) light into ultraviolet (UV) light, which in turn releases NO, and the disintegration of NO gas further promotes the release of paeoniflorin (Pae). The controllable release of NO and Pae is used to achieve short-acting and long-acting synergistic therapy. In vitro experiments demonstrate that Lf-UZSP exhibits promising neuroprotective effects in PD cell models by scavenging excessive reactive oxygen species (ROS) and inhibiting neuroinflammation. Further in vivo experiments confirm that Lf-UZSP can significantly improve the motor impairment and alleviate the loss of dopaminergic (DA) neurons in the substantia nigra and striatum in PD mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI