News recommendations based on collaborative topic modeling and collaborative filtering with generative adversarial networks

协同过滤 计算机科学 偏爱 推荐系统 生成语法 机器学习 人工智能 对抗制 主题模型 偏好学习 情报检索 人工神经网络 生成对抗网络 生成模型 冷启动(汽车) 深度学习 工程类 数学 航空航天工程 统计
作者
Duen‐Ren Liu,Yang Huang,Jhen-Jie Jhao,Shin‐Jye Lee
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
标识
DOI:10.1108/dta-08-2022-0315
摘要

Purpose Online news websites provide huge amounts of timely news, bringing the challenge of recommending personalized news articles. Generative adversarial networks (GAN) based on collaborative filtering (CFGAN) can achieve effective recommendation quality. However, CFGAN ignores item contents, which contain more latent preference features than just user ratings. It is important to consider both ratings and item contents in making preference predictions. This study aims to improve news recommendation by proposing a GAN-based news recommendation model considering both ratings (implicit feedback) and the latent features of news content. Design/methodology/approach The collaborative topic modeling (CTM) can improve user preference prediction by combining matrix factorization (MF) with latent topics of item content derived from latent topic modeling. This study proposes a novel hybrid news recommendation model, Hybrid-CFGAN, which modifies the architecture of the CFGAN model with enhanced preference learning from the CTM. The proposed Hybrid-CFGAN model contains parallel neural networks – original rating-based preference learning and CTM-based preference learning, which consider both ratings and news content with user preferences derived from the CTM model. A tunable parameter is used to adjust the weights of the two preference learnings, while concatenating the preference outputs of the two parallel neural networks. Findings This study uses the dataset collected from an online news website, NiusNews, to conduct an experimental evaluation. The results show that the proposed Hybrid-CFGAN model can achieve better performance than the state-of-the-art GAN-based recommendation methods. The proposed novel Hybrid-CFGAN model can enhance existing GAN-based recommendation and increase the performance of preference predictions on textual content such as news articles. Originality/value As the existing CFGAN model does not consider content information and solely relies on history logs, it may not be effective in recommending news articles. Our proposed Hybrid-CFGAN model modified the architecture of the CFGAN generator by adding a parallel neural network to gain the relevant information from news content and user preferences derived from the CTM model. The novel idea of adjusting the preference learning from two parallel neural networks – original rating-based preference learning and CTM-based preference learning – contributes to improve the recommendation quality of the proposed model by considering both ratings and latent preferences derived from item contents. The proposed novel recommendation model can improve news recommendation, thereby increasing the commercial value of news media platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyi1完成签到,获得积分10
1秒前
1秒前
科研通AI5应助Keven采纳,获得10
2秒前
DDD发布了新的文献求助10
2秒前
书虫发布了新的文献求助10
2秒前
Viv完成签到,获得积分10
2秒前
结实的蘑菇完成签到 ,获得积分10
3秒前
AllOfMe完成签到 ,获得积分10
4秒前
充电宝应助晓晓采纳,获得10
4秒前
catcher456完成签到,获得积分10
4秒前
正道魁首发布了新的文献求助10
5秒前
5秒前
张张应助席涑采纳,获得10
5秒前
张张应助席涑采纳,获得10
5秒前
陈陈陈皮应助席涑采纳,获得10
5秒前
F远Y山F应助彧辰采纳,获得10
7秒前
7秒前
7秒前
8秒前
舒心慕青应助bobo采纳,获得10
8秒前
sff关闭了sff文献求助
8秒前
林lnbob发布了新的文献求助10
8秒前
科研通AI5应助初八采纳,获得10
9秒前
领导范儿应助wentong采纳,获得10
10秒前
10秒前
dudu发布了新的文献求助10
10秒前
11秒前
慕青应助556644O采纳,获得10
11秒前
11秒前
阔达的绿竹完成签到 ,获得积分10
11秒前
天狗屯月发布了新的文献求助10
11秒前
不是空谷发布了新的文献求助10
13秒前
13秒前
something完成签到 ,获得积分10
15秒前
原子完成签到,获得积分10
16秒前
16秒前
ding应助Yun yun采纳,获得10
16秒前
QIQ发布了新的文献求助10
16秒前
大喜完成签到,获得积分10
17秒前
中陆完成签到,获得积分10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312