已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimating fractional vegetation cover and aboveground biomass for land degradation assessment in eastern Mongolia steppe: combining ground vegetation data and remote sensing

归一化差异植被指数 草原 植被(病理学) 环境科学 土地覆盖 草原 增强植被指数 生物量(生态学) 遥感 背景(考古学) 自然地理学 土地利用 地理 气候变化 地质学 生态学 植被指数 医学 考古 病理 生物 海洋学
作者
Batnyambuu Dashpurev,Munkhtsetseg Dorj,Thanh Noi Phan,Jörg Bendix,Lukas Lehnert
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (2): 452-468 被引量:9
标识
DOI:10.1080/01431161.2023.2165421
摘要

Fractional vegetation cover (FVC) and aboveground biomass (AGB) are critically important for monitoring grassland degradation, and their accurate estimation can be used as key proxies for assessing land degradation. The main purpose of this study was to estimate the FVC and AGB in the eastern Mongolian steppe using remote sensing and machine learning. In this context, spectral bands and vegetation indices were extracted from the processed Sentinel-2 data and used as predictors. The field vegetation data were derived from the Mongolian pasture-monitoring database, which consisted of 256 plots with FVC and AGB measurements. Consequently, we derived FVC and AGB from Sentinel-2 imagery using 256 field vegetation measurements in the vast eastern Mongolian steppe as a reference for random forest (RF) models (R2FVC = 0.81, R²AGB = 0.76). Among the variables, the predictor variables derived from spectral vegetation and soil indices, especially NDVI, Simple Ratio (SR), and OSAVI, were highly important for predicting FVC and AGB. As expected, a comparison among the map values showed that the spatial distribution of FVC and AGB was consistent with the landscapes and ecoregions in the study area. As the FVC and AGB maps only showed the current condition of vegetation cover, we also analysed NDVI trends to explain vegetation cover changes. We tested temporal trends in vegetation using Landsat NDVI time series data and the Mann-Kendall trend test. This revealed that in 7.3% of the area, the NDVI significantly increased, whereas a significant decrease was observed in 58% of the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏小丸子完成签到 ,获得积分10
1秒前
Shrimp完成签到 ,获得积分10
2秒前
葛力完成签到,获得积分10
2秒前
mads完成签到 ,获得积分10
3秒前
vincy完成签到 ,获得积分10
4秒前
askfhasihfa发布了新的文献求助10
5秒前
dream完成签到 ,获得积分10
5秒前
GongZH完成签到,获得积分10
5秒前
wanci应助summer采纳,获得30
6秒前
青梅完成签到 ,获得积分10
6秒前
马文杰完成签到 ,获得积分10
7秒前
鸭蛋完成签到 ,获得积分10
7秒前
8秒前
抠鼻公主完成签到 ,获得积分10
9秒前
青糯完成签到 ,获得积分10
10秒前
满眼星辰完成签到 ,获得积分10
10秒前
12秒前
瑞瑞完成签到 ,获得积分10
13秒前
科研通AI2S应助chenyuns采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得30
16秒前
16秒前
杳鸢应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
杳鸢应助科研通管家采纳,获得10
16秒前
adkdad完成签到,获得积分10
17秒前
young_joint发布了新的文献求助10
18秒前
18秒前
xiewuhua完成签到,获得积分10
18秒前
ajing完成签到,获得积分10
19秒前
neonsun完成签到,获得积分10
20秒前
kang完成签到 ,获得积分10
21秒前
伊蕾娜完成签到 ,获得积分10
24秒前
24秒前
到江南散步完成签到,获得积分10
24秒前
JM完成签到,获得积分10
27秒前
辛勤钧完成签到,获得积分20
27秒前
闪光喵喵发布了新的文献求助10
27秒前
29秒前
按照国际惯例完成签到 ,获得积分10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234449
求助须知:如何正确求助?哪些是违规求助? 2880760
关于积分的说明 8216976
捐赠科研通 2548347
什么是DOI,文献DOI怎么找? 1377713
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304