[Study on the prognostic influencing factors of esophageal squamous cell carcinoma and the predictive value of inflammatory reaction indexes on its postoperative recurrence].

医学 内科学 接收机工作特性 逻辑回归 多元分析 胃肠病学 单变量分析 食管鳞状细胞癌 肿瘤科 淋巴结
作者
X Wang,Z Wang,Wubing Lu,Ganye Zhao
出处
期刊:PubMed 卷期号:45 (2): 160-164 被引量:1
标识
DOI:10.3760/cma.j.cn112152-20210326-00268
摘要

Objective: To explore the influence factors of poor prognosis of esophageal squamous cell carcinoma (ESCC) and the predictive value of inflammatory reaction indexes including neutrophils and lymphocytes ratio (NLR), platelet and lymphocyte ratio (PLR), monocyte and lymphocyte ratio (MLR) provision and differentiation degree, infiltration depth, lymph node metastasis number on the postoperative recurrence of ESCC. Methods: A total of 130 patients with ESCC who underwent radical resection from February 2017 to February 2019 in Nanyang Central Hospital were selected and divided into good prognosis group (66 cases) and poor prognosis group (64 cases) according to the prognostic effect. The clinical data and follow-up data were collected. Multivariate logistic regression analysis was used to determine the independent influencing factors of poor prognosis. Spearman correlation analysis was used to determine the correlation between preoperative NLR, PLR and MLR with the degree of differentiation, depth of invasion and number of lymph node metastases. Receiver operating characteristic (ROC) curve analysis was used to evaluate the efficacy of NLR, PLR and MLR in predicting poor prognosis of ESCC. Results: Univariate analysis showed that the degree of differentiation, the degree of invasion and the number of lymph node metastasis were related to the prognoses of patients with ESCC (P<0.05). Multivariate logistic regression analysis showed that the degree of differentiation, depth of invasion and number of lymph node metastases were independent influencing factors for poor prognosis of patients with ESCC, moderate differentiation (OR=2.603, 95% CI: 1.009-6.715) or low differentiation (OR=9.909, 95% CI: 3.097-31.706), infiltrating into fibrous membrane (OR=14.331, 95% CI: 1.333-154.104) or surrounding tissue (OR=23.368, 95% CI: 1.466-372.578), the number of lymph node metastases ≥ 3 (OR=9.225, 95% CI: 1.693-50.263) indicated poor prognosis. Spearman correlation analysis showed that NLR was negatively correlated with the degree of differentiation and the number of lymph node metastases (r=-0.281, P=0.001; r=-0.257, P=0.003), PLR was negatively correlated with the degree of differentiation, depth of invasion and number of lymph node metastasis (r=-0.250, P=0.004; r=0.197, P=0.025; r=-0.194, P=0.027), MLR was positively correlated with the degree of differentiation and the number of lymph node metastasis (r=0.248, P=0.004; r=0.196, P=0.025). ROC curve analysis showed that the areas under the curve of NLR, PLR and MLR in predicting poor prognosis of ESCC were 0.971, 0.925 and 0.834, respectively. The best cut-off value of NLR was 2.87. The sensitivity and specificity of NLR in predicting poor prognosis of ESCC were 90.6% and 87.9%, respectively. The optimal cut-off value of PLR was 141.75. The sensitivity and specificity for predicting poor prognosis of ESCC were 92.2% and 87.9%, respectively. The best cut-off value of MLR was 0.40. The sensitivity and specificity of MLR in predicting poor prognosis of esophageal squamous cell carcinoma were 54.7% and 100.0%, respectively. Conclusions: The degree of differentiation, the degree of invasion and the number of lymph node metastases are closely related to the poor prognosis of patients with esophageal squamous cell carcinoma. NLR, PLR and MLR can provide important information for predicting the poor prognosis of esophageal squamous cell carcinoma.目的: 探讨食管鳞状细胞癌预后不良的影响因素及中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR)与分化程度、浸润深度、淋巴结转移数目等炎性反应指标对食管鳞状细胞癌术后复发的预测价值。 方法: 选取2017年2月至2019年2月在南阳市中心医院行根治术治疗的130例食管鳞状细胞癌患者,按照预后效果分为预后良好组(66例)和预后不良组(64例)。收集其临床资料和随访资料。采用多因素logistic回归分析确定患者预后不良的独立影响因素,采用Spearman相关分析明确术前NLR、PLR和MLR与分化程度、浸润深度、淋巴结转移数目的相关性,采用受试者工作特征(ROC)曲线分析评价NLR、PLR和MLR预测食管鳞状细胞癌预后不良的效能。 结果: 单因素分析显示,分化程度、浸润程度、淋巴结转移数目与食管鳞状细胞癌患者的预后有关(均P<0.05)。多因素logistic回归分析显示,分化程度、浸润深度和淋巴结转移数目均为食管鳞状细胞癌患者预后不良的独立影响因素,中分化(OR=2.603,95% CI:1.009~6.715)或低分化(OR=9.909,95% CI:3.097~31.706)、浸润到纤维膜(OR=14.331,95% CI:1.333~154.104)或周围组织(OR=23.368,95% CI:1.466~372.578)、淋巴结转移数目≥3枚(OR=9.225,95% CI:1.693~50.263)的患者患者预后不良。Spearman相关分析显示,NLR与分化程度、淋巴结转移数目呈负相关(r=-0.281,P=0.001;r=-0.257,P=0.003),PLR与分化程度、浸润深度、淋巴结转移数目呈负相关(r=-0.250,P=0.004;r=-0.197,P=0.025;r=-0.194,P=0.027),MLR与分化程度、淋巴结转移数目呈正相关(r=0.248,P=0.004;r=0.196,P=0.025)。ROC曲线分析显示,NLR、PLR和MLR预测食管鳞状细胞癌预后不良的曲线下面积分别为0.971、0.925和0.834。NLR的最佳界值为2.87,预测食管鳞状细胞癌预后不良的灵敏度为90.6%,特异度为87.9%。PLR的最佳界值为141.75,预测食管鳞状细胞癌预后不良的灵敏度为92.2%,特异度为87.9%。MLR的最佳界值为0.40,预测食管鳞状细胞癌预后不良的灵敏度为54.7%,特异度为100.0%。 结论: 分化程度、浸润程度、淋巴结转移数目与食管鳞状细胞癌预后不良密切相关,NLR、PLR和MLR能为食管鳞状细胞癌预后不良预测提供重要信息。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
优秀笑柳完成签到,获得积分10
1秒前
丘比特应助trussie采纳,获得10
1秒前
Cherish完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Owen应助马上飞上宇宙采纳,获得10
3秒前
善学以致用应助jc采纳,获得10
3秒前
5秒前
划分完成签到,获得积分10
5秒前
111发布了新的文献求助10
6秒前
fanfan完成签到,获得积分10
7秒前
周久完成签到 ,获得积分10
7秒前
ada发布了新的文献求助10
8秒前
小蘑菇应助小卢卢快闭嘴采纳,获得10
9秒前
彭tiantian完成签到 ,获得积分10
9秒前
11秒前
lucy发布了新的文献求助10
11秒前
13秒前
爱放屁的马邦德完成签到,获得积分10
13秒前
simdows发布了新的文献求助10
14秒前
Rain完成签到,获得积分10
15秒前
16秒前
lzcccccc完成签到,获得积分10
17秒前
ljc完成签到 ,获得积分10
18秒前
19秒前
科研通AI6应助纸箱采纳,获得10
20秒前
20秒前
original完成签到,获得积分10
21秒前
一向年光无限身完成签到,获得积分10
21秒前
浮游应助大李不说话采纳,获得10
23秒前
24秒前
日出完成签到,获得积分10
25秒前
Twonej举报lilianan求助涉嫌违规
26秒前
26秒前
七星茶发布了新的文献求助10
27秒前
无花果应助Wells采纳,获得10
29秒前
上官若男应助Wells采纳,获得10
29秒前
乐乐应助Wells采纳,获得10
29秒前
赘婿应助Wells采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741