已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Study on the prognostic influencing factors of esophageal squamous cell carcinoma and the predictive value of inflammatory reaction indexes on its postoperative recurrence].

医学 内科学 接收机工作特性 逻辑回归 多元分析 胃肠病学 单变量分析 食管鳞状细胞癌 肿瘤科 淋巴结
作者
X Wang,Z Wang,Wubing Lu,Ganye Zhao
出处
期刊:PubMed 卷期号:45 (2): 160-164 被引量:1
标识
DOI:10.3760/cma.j.cn112152-20210326-00268
摘要

Objective: To explore the influence factors of poor prognosis of esophageal squamous cell carcinoma (ESCC) and the predictive value of inflammatory reaction indexes including neutrophils and lymphocytes ratio (NLR), platelet and lymphocyte ratio (PLR), monocyte and lymphocyte ratio (MLR) provision and differentiation degree, infiltration depth, lymph node metastasis number on the postoperative recurrence of ESCC. Methods: A total of 130 patients with ESCC who underwent radical resection from February 2017 to February 2019 in Nanyang Central Hospital were selected and divided into good prognosis group (66 cases) and poor prognosis group (64 cases) according to the prognostic effect. The clinical data and follow-up data were collected. Multivariate logistic regression analysis was used to determine the independent influencing factors of poor prognosis. Spearman correlation analysis was used to determine the correlation between preoperative NLR, PLR and MLR with the degree of differentiation, depth of invasion and number of lymph node metastases. Receiver operating characteristic (ROC) curve analysis was used to evaluate the efficacy of NLR, PLR and MLR in predicting poor prognosis of ESCC. Results: Univariate analysis showed that the degree of differentiation, the degree of invasion and the number of lymph node metastasis were related to the prognoses of patients with ESCC (P<0.05). Multivariate logistic regression analysis showed that the degree of differentiation, depth of invasion and number of lymph node metastases were independent influencing factors for poor prognosis of patients with ESCC, moderate differentiation (OR=2.603, 95% CI: 1.009-6.715) or low differentiation (OR=9.909, 95% CI: 3.097-31.706), infiltrating into fibrous membrane (OR=14.331, 95% CI: 1.333-154.104) or surrounding tissue (OR=23.368, 95% CI: 1.466-372.578), the number of lymph node metastases ≥ 3 (OR=9.225, 95% CI: 1.693-50.263) indicated poor prognosis. Spearman correlation analysis showed that NLR was negatively correlated with the degree of differentiation and the number of lymph node metastases (r=-0.281, P=0.001; r=-0.257, P=0.003), PLR was negatively correlated with the degree of differentiation, depth of invasion and number of lymph node metastasis (r=-0.250, P=0.004; r=0.197, P=0.025; r=-0.194, P=0.027), MLR was positively correlated with the degree of differentiation and the number of lymph node metastasis (r=0.248, P=0.004; r=0.196, P=0.025). ROC curve analysis showed that the areas under the curve of NLR, PLR and MLR in predicting poor prognosis of ESCC were 0.971, 0.925 and 0.834, respectively. The best cut-off value of NLR was 2.87. The sensitivity and specificity of NLR in predicting poor prognosis of ESCC were 90.6% and 87.9%, respectively. The optimal cut-off value of PLR was 141.75. The sensitivity and specificity for predicting poor prognosis of ESCC were 92.2% and 87.9%, respectively. The best cut-off value of MLR was 0.40. The sensitivity and specificity of MLR in predicting poor prognosis of esophageal squamous cell carcinoma were 54.7% and 100.0%, respectively. Conclusions: The degree of differentiation, the degree of invasion and the number of lymph node metastases are closely related to the poor prognosis of patients with esophageal squamous cell carcinoma. NLR, PLR and MLR can provide important information for predicting the poor prognosis of esophageal squamous cell carcinoma.目的: 探讨食管鳞状细胞癌预后不良的影响因素及中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR)与分化程度、浸润深度、淋巴结转移数目等炎性反应指标对食管鳞状细胞癌术后复发的预测价值。 方法: 选取2017年2月至2019年2月在南阳市中心医院行根治术治疗的130例食管鳞状细胞癌患者,按照预后效果分为预后良好组(66例)和预后不良组(64例)。收集其临床资料和随访资料。采用多因素logistic回归分析确定患者预后不良的独立影响因素,采用Spearman相关分析明确术前NLR、PLR和MLR与分化程度、浸润深度、淋巴结转移数目的相关性,采用受试者工作特征(ROC)曲线分析评价NLR、PLR和MLR预测食管鳞状细胞癌预后不良的效能。 结果: 单因素分析显示,分化程度、浸润程度、淋巴结转移数目与食管鳞状细胞癌患者的预后有关(均P<0.05)。多因素logistic回归分析显示,分化程度、浸润深度和淋巴结转移数目均为食管鳞状细胞癌患者预后不良的独立影响因素,中分化(OR=2.603,95% CI:1.009~6.715)或低分化(OR=9.909,95% CI:3.097~31.706)、浸润到纤维膜(OR=14.331,95% CI:1.333~154.104)或周围组织(OR=23.368,95% CI:1.466~372.578)、淋巴结转移数目≥3枚(OR=9.225,95% CI:1.693~50.263)的患者患者预后不良。Spearman相关分析显示,NLR与分化程度、淋巴结转移数目呈负相关(r=-0.281,P=0.001;r=-0.257,P=0.003),PLR与分化程度、浸润深度、淋巴结转移数目呈负相关(r=-0.250,P=0.004;r=-0.197,P=0.025;r=-0.194,P=0.027),MLR与分化程度、淋巴结转移数目呈正相关(r=0.248,P=0.004;r=0.196,P=0.025)。ROC曲线分析显示,NLR、PLR和MLR预测食管鳞状细胞癌预后不良的曲线下面积分别为0.971、0.925和0.834。NLR的最佳界值为2.87,预测食管鳞状细胞癌预后不良的灵敏度为90.6%,特异度为87.9%。PLR的最佳界值为141.75,预测食管鳞状细胞癌预后不良的灵敏度为92.2%,特异度为87.9%。MLR的最佳界值为0.40,预测食管鳞状细胞癌预后不良的灵敏度为54.7%,特异度为100.0%。 结论: 分化程度、浸润程度、淋巴结转移数目与食管鳞状细胞癌预后不良密切相关,NLR、PLR和MLR能为食管鳞状细胞癌预后不良预测提供重要信息。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助chcmuer采纳,获得10
3秒前
浮游应助杨璇采纳,获得10
3秒前
随机应变发布了新的文献求助10
4秒前
彬彬完成签到,获得积分10
5秒前
5秒前
aki应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
6秒前
阿喵完成签到 ,获得积分10
6秒前
Xuech完成签到,获得积分10
6秒前
freshman完成签到,获得积分10
9秒前
9秒前
忍蛙完成签到,获得积分10
9秒前
mmc发布了新的文献求助10
9秒前
山山而川完成签到 ,获得积分10
9秒前
IfItheonlyone完成签到 ,获得积分10
12秒前
14秒前
哇哇哇完成签到 ,获得积分10
17秒前
窝窝完成签到,获得积分20
17秒前
17秒前
花城完成签到 ,获得积分10
17秒前
18秒前
王威发布了新的文献求助10
18秒前
freshman发布了新的文献求助30
20秒前
ss完成签到,获得积分20
20秒前
111完成签到 ,获得积分10
20秒前
mingyu发布了新的文献求助20
21秒前
RONG完成签到 ,获得积分10
21秒前
我是老大应助fancymao采纳,获得10
23秒前
ss发布了新的文献求助10
24秒前
英姑应助激昂的逊采纳,获得10
24秒前
科目三应助王君青见采纳,获得10
26秒前
漂亮糖豆发布了新的文献求助10
28秒前
斯文败类应助陶醉的斓采纳,获得10
28秒前
科研通AI6应助Mia采纳,获得10
31秒前
mmc完成签到,获得积分10
31秒前
32秒前
超帅慕晴完成签到,获得积分10
32秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469843
求助须知:如何正确求助?哪些是违规求助? 4572859
关于积分的说明 14337388
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465253
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259