Dynamic Parameter Identification of Collaborative Robot Based on WLS-RWPSO Algorithm

机器人 粒子群优化 算法 控制理论(社会学) 卡尔曼滤波器 移动机器人 计算机科学 鉴定(生物学) 人工智能 植物 控制(管理) 生物
作者
Minan Tang,Yaguang Yan,Bo An,Wenjuan Wang,Yaqi Zhang
出处
期刊:Machines [MDPI AG]
卷期号:11 (2): 316-316 被引量:8
标识
DOI:10.3390/machines11020316
摘要

Parameter identification of the dynamic model of collaborative robots is the basis of the development of collaborative robot motion state control, path tracking, state monitoring, fault diagnosis, and fault tolerance systems, and is one of the core contents of collaborative robot research. Aiming at the identification of dynamic parameters of the collaborative robot, this paper proposes an identification algorithm based on weighted least squares and random weighted particle swarm optimization (WLS-RWPSO). Firstly, the dynamics mathematical model of the robot is established using the Lagrangian method, the dynamic parameters of the robot to be identified are determined, and the linear form of the dynamics model of the robot is derived taking into account the joint friction characteristics. Secondly, the weighted least squares method is used to obtain the initial solution of the parameters to be identified. Based on the traditional particle swarm optimization algorithm, a random weight particle swarm optimization algorithm is proposed for the local optimal problem to identify the dynamic parameters of the robot. Thirdly, the fifth-order Fourier series is designed as the excitation trajectory, and the original data collected by the sensor are denoised and smoothed by the Kalman filter algorithm. Finally, the experimental verification on a six-degree-of-freedom collaborative robot proves that the predicted torque obtained by the identification algorithm in this paper has a high degree of matching with the measured torque, and the established model can reflect the dynamic characteristics of the robot, effectively improving the identification accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助yhx采纳,获得10
刚刚
1秒前
小二郎应助又又s_1采纳,获得10
1秒前
wenwenwang完成签到 ,获得积分10
1秒前
哈哈哈发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
RF完成签到,获得积分10
7秒前
7秒前
苹果不平发布了新的文献求助10
8秒前
8秒前
英俊的铭应助666采纳,获得10
9秒前
9秒前
9秒前
9秒前
junyang发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
13秒前
14秒前
14秒前
14秒前
淡然炳发布了新的文献求助10
14秒前
15秒前
旋光活性发布了新的文献求助10
15秒前
old杜发布了新的文献求助10
16秒前
今后应助TTRRCEB采纳,获得10
18秒前
SciGPT应助王王碎冰冰采纳,获得10
19秒前
香蕉觅云应助辛勤的大雁采纳,获得10
19秒前
19秒前
19秒前
砍柴少年发布了新的文献求助10
20秒前
wallonce发布了新的文献求助10
20秒前
chun完成签到,获得积分10
20秒前
吃土心完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663524
求助须知:如何正确求助?哪些是违规求助? 4850541
关于积分的说明 15104701
捐赠科研通 4821750
什么是DOI,文献DOI怎么找? 2580972
邀请新用户注册赠送积分活动 1535170
关于科研通互助平台的介绍 1493501